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Abstract—Video may pass through various types of hetero-
geneous networks during the process of transmission, which
has adverse impacts on the real-time video quality. Traditional
methods focus on how to compress videos based on the video
flow without considering the real-time network information. This
paper presents an adaptive method that combines video encoding
and the video transmission control system over heterogeneous
networks. This method includes the following steps: first, to collect
and standardize the real-time information describing the network
and the video, then to assess the video quality and calculate the
video coding rate based on the standardized information, and
then to process the encoded compression of the video according
to the calculated coding rate and transfer the compressed video.
The experiments show that there is a significant improvement for
the quality of real-time videos transmission without changing the
existing network, particularly the core equipment. Our solution is
easy to deploy and implement quickly and may help to extensively
ensure video quality for normal users.

Notice to Practitioners—The main objective of this work is to pro-
vide an adaptive video transmission control system and method-
ology to improve the real-time video quality, which takes the real-
time network information into the video transmission control over
heterogeneous networks. Our solution is an application-layer pro-
tocol and includes three phases: 1) to collect the network and video
flow status simultaneously; 2) to adjust the parameters for video
quality dynamically that come from the network and video envi-
ronment feedback; and 3) to optimize the video coding rate that is
in accordance with the current environment conditions. Our solu-
tion is easy to deploy and implement quickly, may help to exten-
sively ensure video quality for normal users.

Index Terms—Adaptive, heterogeneous networks, neural net-
works, reinforcement learning, video transmission control.

I. INTRODUCTION

HE transmission of real-time videos still faces huge
challenges through the current Internet. The traditional
Internet offers best-effort communication services in which
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the network transfers all of the messages with its best effort,
with no guarantees of the Quality of Service (QoS) [1]-[4]. To
ensure the transfer of real-time video data, researchers have
conducted many studies. The Internet Engineering Task Force
(IETF) has proposed several QoS technical solutions, including
integrated service, differentiated services, multi-protocol label
switching, and traffic engineering. However, as the main QoS
issue is always the problem of end-to-end transmission, which
involves the entire network, changes to one or a few links
will not solve the problem. Therefore, researchers have started
to consider adding processes, such as retransmission at the
application level, to increase the QoS, yet there have been
no good results to date. Currently, the QoS problem during
the video transmission process remains unsolved. Test data
that have been recorded over a longer period of time may
experience several heterogeneous networks that have different
physical characteristics, calculation methods, and transmission
methods from each other and, therefore, have adverse impacts
on the QoS. From the perspective of the distribution range, the
video communication network can be divided into the Local
Area Network (LAN), Wireless LAN (WLAN), intercollegiate
network, and the Internet. From the perspective of video ter-
minals, we chose parameters representing the characteristics
of the network: network time delay, jitter, and packet loss.
These parameters are not only representative of the external
characteristics of the entire network, but they are also easy to
obtain without regard for the actual configuration or topology
of the network. With two days of parameter testing, we col-
lected almost all data for both the free and congested network
scenarios. Fig. 1(a)—(d) shows the delay time distributions for
the four types of networks.

We can see that the time delays of the LAN are approximately
1-2 ms. Most of the time delays of the WLAN are under ten mil-
liseconds, and the majority is approximately 2—3 ms. The varia-
tion is much greater than that of the LAN. The time delays of the
China Education and Research Network (CERNET) between
the Beijing University of Posts & Telecommunications and Ts-
inghua University are approximately 10 ms and have relatively
large variations. The time delays of the Internet (Beijing Univer-
sity of Posts and Telecommunications and Stanford University)
are far greater than those of the previous three, concentrated be-
tween 180 to 300 ms. Not only are the absolute values large, but
the variation range is also large, which may be a result of the in-
ternational gateway and the long routing path. Table I lists the
statistics of the parameters for each network in accordance with

Fig. 1(a)~(d).
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Fig. 1. Delay time distributions for different network types.

TABLE 1
CHARACTERISTICS OF EACH NETWORK TYPE

Network Type Average Time Delay (ms) Average Jitter (ms) Packet Loss

LAN 1.35 2.76

0.05%

WLAN 14.59 20.78 0.12%
CERNET 717 . 8.20 0.31%
INTERNET ‘ 211.09 28.41 0.48%

Currently, researchers are studying ways to compress the
video better, hoping to find a new video coding method that is
network friendly. The majority of studies [5]-[10] focus mainly
on video compression based on the characteristics of the video,
without considering the real-time network status information
as time delay, jitter, and packet loss [12].

II. STATE OF THE ART AND OUR CONTRIBUTION

The related work to this paper can be generally classified into
three categories: 1) video coding; 2) assessment of the video
quality; and 3) Reinforcement Learning approach.

A. Video Coding

H.264/AVC, which is defined by International Organization
for Standardization (ISO) and International Telecommunica-
tions Union (ITU-T), has relatively high coding efficiency
and error resilience. Moreover, the code stream structure has
relatively high adaptability and error recovery ability and
saves approximately 50% of the coding rate of H.263 with the
same picture quality. As with other standards, the H.264/AVC
standard only prescribes the coding stream that can be accepted
by decoders and does not specify how the coding machine
should realize it. Another research area of high interest is the
problem of controlling the coding rate, that is, how to reach the
best video coding quality under the limits of the output coding
rates. Wang et al.[12], Chen et al.[13], and Jimenez-Moreno et
al.[14] have discussed coding rate controlling methods based
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on the rate-distortion optimization (RDO). Harsini and Zorsi
[15] studied an adaptive coding rate control algorithm based on
frame complexity. The application of H.264/AVC to different
networks has drawn wide attention. Kim and Hong [16] inves-
tigated the configuration problem of applying H.264/AVC to
WLAN real-time video, discussed different video coding and
network characteristics under different scenarios, and proposed
and tested principles for choosing the coding machine and the
network parameter configurations. Kambhatla et al[17] dis-
cussed the switching of video resources with different coding
based on H.264/AVC. Hsiao et al.[18] studied the coding
problem of H.264/AVC under different network bandwidths.

B. Assessment of the Video Quality

1) Peak Signal-to-Noise Ratio (PSNR): We normally use the
PSNR or the mean square error (MSE) to measure the RDO
during the coding and decoding processes of the video, that is,
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among which z; and z; are the pixels of the original and re-
built pictures, respectively; N? is the overall number of pixels
in an N X N picture. The algorithm is very attractive because
it is easily calculated and improved mathematically, and it has
a specific physical definition. However, the algorithm has the
disadvantages of overlooking the sensory habits of the human
visual system when looking at pictures. The assessment result
may not be consistent with people's sensory habits for pictures.

2) Structural Similarity Index Measurement (SSIM): The
SSIM is a method of assessing video quality based on structural
distortion and was first proposed by Wang et al.[19]. Unlike
PSNR, SSIM is developed based on the human visual system
and draws on the structural information of a visual scenario to
calculate the information change of the structural information
before and after coding, so that it can assess the ratio distortion
that people will perceive. The SSIM provides an objective
evaluation method that is very close to that of human perceptual
image distortion and is more accurate than the PSNR. However,
the calculation is much more complicated than that of PSNR.
The SSIM with corrections for the network situation will be
used as the assessment standard for real-time video QoS in the
present paper.

3) NTIA General Model: The National Telecommunications
and Information Administration (NTIA) General Model stood
out in the test of video assessment tools organized by the Video
Quality Experts Group (VQEG). The model generated results
consistent with those of objective assessments and was accepted
by ANSI as the standard in 2003. NTIA has been working to find
parameters that are not related to techniques and can be used to
depict the image-quality perception behavior. The parameters
could then be combined with linear regression models to obtain
results that are close to people's objective assessment. When re-
alized, the NTIA General Model [19]adopts a reduced-reference
technology that uses the low-pass characteristic components ex-
tracted from the original video flow and the reconstructed video
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flow. Although the method has very good video assessment re-
sults, the method is too complicated to be calculated and is
not applicable to online real-time usage compared to the pre-
vious two methods. In consideration of the complexity of the
method, the present study only used the method as an offline
video quality assessment tool to evaluate the video quality re-
ceived after network transmission.

C. Reinforcement Learning (RL) Approach

The RL approach to problem solving may be described as
an agent that can sense its surroundings, learn by continuous
trial-and-error and reach the highest skill level. Kaelbling et
al.[20] introduced some basic problems in the RL approach area
and summarized some classic application scenarios. In classic
RL models, the agent is always undergoing dynamic change and
is able to sense the environmental state. A corresponding ac-
tion that could change the environmental state is specified. The
agent chooses an action according to the real-time situation. The
results are returned to the agent as a reward. The agent is ex-
pected to choose the action that will increase the long-term ben-
efits that could be realized by the systematic trial and will re-
ceive corresponding reward feedback. The systematic learning
process can be realized by various types of algorithms. Rum-
mery et al.[21] also discussed the application of reinforcement
learning to the Robert control area in detail, as well as the char-
acteristics, advantages and shortages, in his doctoral disserta-
tion. Reinforcement learning is similar to Dynamic Program-
ming to some degree, and it can be used to solve optimiza-
tion problems. One classic application of the RL approach is to
learn the optimal control strategy in a real-time control system.
Robert ef al.[22] was the first to apply reinforcement learning
to the video transmission area, solving the coding rate control
problems of the WLAN transmission process for video and im-
ages in the medical field. Pradhan and Subudhi [23] proposed a
real-time adaptive control for a flexible manipulator using rein-
forcement learning approach. Mastronarde and van der Schaar
[24] proposed a fast reinforcement learning algorithm for en-
ergy-efficient wireless communication network. Yang and Ja-
gannanthan [25] designed a reinforcement learning controller
for affine nonlinear discrete-time systems.

In summary, current video transmission mechanism and
video coding process research are relatively independent and
fail to combine. If we are able to combine the research of the
two fields, it may be possible to use the network information
during video transmission to guide the coding process of the
video so that the coding will have the characteristic of network
adaptability, which may lead to good real-time video perfor-
mance. Based on this problem, the present study proposed a
network adaptive real-time video transmission system. The
system mainly uses feedback information from the application
level during video transmission and changes the parameters
dynamically during the coding process, with an automatic
control system based on Reinforcement Learning approach.
The proposed adaptive video transmission control solution is
an application-layer protocol and includes three phases: 1) to
collect the network and video flow information simultaneously;
2) to adjust the key parameters for intelligent control based
on the video quality information dynamically that come from
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Fig. 2. Proposed system framework.

network and video environment feedback; and 3) to optimize
the video coding rate that is in accordance with the current
environment conditions. Specifically, the contributions of this
paper can be summarized in the following.

1) Evaluate the video quality with the network condition pa-
rameters as time delay, jitter, and packet loss rate and use
the feedback information from RTCP to assess the network
condition, which means no extra probe packet and a lesser
burden to the network.

2) Adopt the Actor-Critic Model of the RL-based approach
to adjust the key parameters that come from network and
video environment feedback dynamically, derive the solu-
tion for video optimal transmission rate assignment, and
optimize the real-time video quality over heterogeneous
networks.

3) Deploy and test real experiments over different het-
erogeneous networks involving real-time H.264 video
streaming and Session Initiation Protocol (SIP) communi-
cator. Experimental results show that the system does not
perform very well in the heterogeneous networks at first.
The Video Quality Metrics (VQM) values are very high,
and the video qualities are relatively poor. However, as
the learning process progresses, the significant improving
process of the video quality, which means that the system
exhibits strong network adaptability.

The remainder of this paper is structured as follows. In
Section III, proposed adaptive video transmission control
system in detail. Experiments and performance evaluation is
provided in Section IV and conclusion remarks are given in
Section V.

III. SYSTEM ARCHITECTURE

The RL-based network adaptive real-time video communi-
cation system is composed of three processes that can be listed
successively as the collection process for the network and video
conditions, the intelligent controlled learning process, and the
video coding adjustment process. The details of the proposed
system framework are shown in Fig. 2.
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As shown in Fig. 2, the system works on the application level
and adjusts the parameters to accommodate dynamic changes
in the network and video environment. The following sections
introduce each function module in detail:

1) Network Status Collecting Module: This module is used to
collect the condition status information of the network and video
flows, which can be realized by monitoring the Real-time Trans-
port Control Protocol (RTCP) flow (as shown in (®in Fig. 2), and
the video condition information can be acquired in the process
of video coding (shown in (1)in Fig. 2). However, there is the
problem of information inconsistency in the steps between the
two conditions. The network condition information that is re-
ceived from RTCP feedback is characterized by low frequency,
while the video coding is high frequency. We adopted the fol-
lowing strategy to realize the condition-collection module. We
divided the video frames into groups, each of which contained
one key frame and all of the frames between two key frames,
while waiting for the RTCP feedback. The complexity of the
frames of the group is defined as the average complexity of all
frames in the group, and the SSIM value is defined as the av-
erage SSIM values of all frames in the group. All complexity
and SSIM information for each group is stored in the condition
information buffer for updating, as shown in (2)of Fig. 2. When
the RTCP feedback reaches the system, it calculates the video
reward value according to the network condition information
from the feedback and the SSIM stored. The network condition
information collected (as shown in (2)of Fig. 2) and the video
condition information stored in the condition information buffer
(as shown in ()of Fig. 2) is sent to the standardization module
for further processing.

2) Standardization Module: This module is used to stan-
dardize the condition values, and the following method to
standardize the data: each real value entered is divided into
N outputs valued between 0—1. N is identified based on the
value range and distribution of the input. In consideration of
the condition variables of the three networks, including the
delay, jitter, and packet loss, and the video condition variable,
the complexity of the frame, we performed the standardization
as follows: we do not standardize the packet loss because its
values are between 0 and 1, and the standardized values of the
delay and the jitter are in accordance with the actual values of
the four classic network characteristics, and the standardization
of the complexity of the frame reviews the distribution of the
real complexity data. We obtain 17 standardized values ranging
between 0 and 1 after standardization. These values are used
as the inputs of the parameter learning module and the video
control module (as shown in (s)and (®)of Fig. 2).

3) Parameter Learning Module: This module is responsible
for dynamic adjustments of the key parameters for intelligent
control based on the video quality information that come from
network and video environment feedback, it is the core module
that gives the system the capability of online learning and envi-
ronment adaptability. The module takes the outputs of the stan-
dardization module, which include the standardized network in-
formation such as the delay, jitter and packet loss, as well as
the video information and the complexity of the frames, as the
environment condition inputs (as shown in (§)and (®)of Fig. 2)
and takes the SSIM values that have been offset by the net-
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work conditions as the reward of the current environment to
adjust the corresponding parameters. The main frame adopts
the Actor-Critic Model of RL-based approach. In the model, the
Actor is responsible for the action under the current conditions,
while the Critic learns to estimate the possible rewards under
the current conditions. In the learning process, the Critic ac-
cepts the environment reward feedback, adjusts the forecasting
function of the environment rewards with the Q-learning update
rules, and sends the reward forecasting bias back to the Actor
module as outside feedback. The Actor updates the chosen ac-
tion strategy according to the reward feedback provided by the
Critic. If the reward feedback from the Critic is positive, which
means that the previous choice of the video-coding rate led to
better video quality, the Actor adjusts the internal parameters so
that the video-coding rate has a relatively high possibility to be
chosen. If the reward feedback is negative, which means the pre-
viously chosen video-coding rate led to worse video quality, the
Actor adjusts the internal parameters so that the previous coding
rate has a relatively low possibility of being chosen. The pa-
rameters updated by the parameter learning module are used by
the video control module for the selection process of the video
coding rate (as shown in (?)of Fig. 2).

4) Video Control Module: This module is responsible for the
optimal video coding rate that is in accordance with the current
environment conditions, which takes the standardized condi-
tion data that come from the standardization module and the in-
ternal parameters updated by the parameter learning module (as
shown in (?)and (®)of Fig. 2) and chooses an appropriate video
coding rate for the current environment following the strategy
specified by internal parameters according to the current situ-
ation. The video control module must consider exploring the
problem when choosing the video-coding rate, that is, it must
choose whether to try a new video coding rate or to pick one
from previous video coding rates and consider what strategy to
take when choosing a new rate, and which uses the random sam-
pling strategy, in which the possibility of choosing an existing
rate is directly proportional to its corresponding reward. There
are specific probabilities of choosing new video coding rates,
and the probability of choosing a new rate is directly propor-
tional to the known rewards of the rates near it. The input of a
random selection is the condition values of the current condi-
tions, and the internal parameters used are updated and adjusted
by the parameter learning module. The output of the video con-
trol module is the video coding rate that should be used under
the current conditions in the coding process of the video coding
module (as shown in (g)of Fig. 2).

Video Coding Module: This module is responsible for the
coding process of the original video images. The module accepts
the video coding rate that comes from the video control module
as the input (as shown in (9)of Fig. 2) and uses the value as the
targeted coding rate of the video-coding module. The video flow
after the coding process is transferred to the network in the form
of Real-time Transport Protocol (RTP) flow (as shown in @9 of
Fig. 2).

According to the classic statement of the RL-based approach,
the present problem can be re-described in the form of rein-
forcement learning: the present control system can obtain a
specific video quality on the customer's side by adjusting the
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Fig. 3. Adaptive video transmission control system.

video coding process under dynamically changing network and
video conditions. We can see that the system acts as an agent
in RL-based approach. The real-time conditions of the network
and the video constitute the environment conditions (Status),
and the adjustment process of the video coding represents the
possible actions of the system (Action) and the video quality
on the customer's side is the reward in the system (Reward).
The target of the present system is to learn the optimal video
adjusting strategy by continuous trials, so that the estimation
value of the video quality from the customer's side can be
maximized. The core realization frame of the adaptive video
transmission control system is shown in Fig. 3.

The controlling core accepts the three networks' information,
including the delay, jitter, and packet loss, as well as the video
information and frame complexity, as the conditional inputs for
the current environment, and it then exports the video coding
rate that should be set according to the input conditions. The
main frame uses the Actor-Critic model (AHC) in the RL-based
approach. The Actor is responsible for choosing the next action
under the current conditions, and the Critic learns to forecast the
possible rewards under the current conditions. The Value (x) in
Fig. 3 is the forecasting function of the Critic regarding the en-
vironment reward. In the learning process, the Critic accepts the
environment reward feedback, updates the Value (x) and sends
the Actor module the reward prediction bias in the format of out-
side feedback to guide the Actor to adjust the selection strategy.
In the present study, Value (x) learns though updating the rules
according to Q-learning, the Actor adopts the Gaussian function
to realize, and the Actor and Critic use a Back-Propagation (BP)
neural network to generalize the data. Additionally, because the
value ranges of each condition data differ from each other, we
need to standardize the data before using them.

A. Collection of Network Video Characteristic Parameters

The network probe method can send a probe packet to the
network periodically and then assess the current network con-

ditions according to the time delay and loss experienced by the
probe packet. One substantial problem with this method is the
selection of the probe interval. The video flow is transferred
through the RTP, whose flow can be seen as the data channel.
In correspondence with each RTP is the control channel, that
is, the RTCP, which is used to control the transmission of the
RTP and the feedback statistics of the RTP flow, including the
delay and jitter of the RTP packets. The statistics are sent to
the video sender in the format of the Sender Report (SR) or
Receiver Report (RR). The RTCP itself also helps to realize a
time interval adjustment that is network friendly. Therefore, the
present study uses the feedback information from RTCP to as-
sess the network condition, which means no extra probe packet
and a lesser burden to the network. In particular, we introduce
some concepts: fraction lost rate, which is the fraction lost rate
of the RTP data packet from sending SR or RR to the time of
the feedback is the ratio of the actual packet loss to the expected
packet number, and the value in the SR or RR is the result of the
actual number times 256. Inter-arrival jitter, which is the statis-
tical errors of the RTP packet arrives in the time interval, and
use the same time unit as the timestamp, which is an unsigned
integer. Last SR timestamp (LSR) means the time at which the
other side receives the last SR, and if the other side never re-
ceived the SR, the LSR is 0. Delay since the Last SR (DLSR)
means the delay between the time of sending the feedback and
the LSR. The packet loss rate and the inter-arrival jitter can be
used directly, while the time delay must be calculated by the
A LSR DLSR equation with LSR and DLSR. Here, A is the
system time when the feedback is received. In this way, we can
find the corresponding variables that can describe the real-time
network condition. The process can be realized to monitor the
SR or RR arriving event.

The QoS for video transmission represents the guarantee of
successfully delivering packets, without delaying or dropping
packets, which can be described by parameters such as the time
delay, inter-arrival jitter and the packet loss rate. The real-time
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video flow is transferred through RTP, and there is a control-
channel RTCP flow that is used to control the transmission of
the RTP and RTP flow feedback statistics, such as the delay
and jitter of the RTP packet in accordance with the RTP data
channel. The present study uses the feedback information in
the RTCP as the assessment of the network condition, which
requires no extra probe packet and causes a lesser burden to
the network. The real-time condition of the video can be de-
scribed by the frame complexity that depicts the relative com-
plexity of each frame, for example, the changes compared to the
last frame and the displacement shifts. The frames with a rela-
tively high complexity can require relatively many bits, while
the low-complexity ones will require less bits. Integrating the
real-time requirement and the assessment reliability, we propose
the assessment

—egdelay % efsjjltter % —elost

sstm * e

4 = 1/100,

e

E5 = 1/207 €1 = 256 (l)

for the video quality as follows. In (1), the ssim is the video
quality value calculated with the assessment method for the
structural distortion videos, and the time delay, jitter, and packet
loss are in accordance with the three network condition param-
eters. The €4, €5, and ¢; reflect the relative influences of those
three parameters on the quality of the video. The upper equation
is based on the hypothesis that the video quality will decrease
as the three parameters increase and that the influences of the
delay, jitter and packet loss rate increase ordinarily.

B. Standardization of the Network Characteristic Parameters

The network characteristic parameters have high variance, so
that the standardized values distribute inside a consistent range
and provide with consistent standardized network condition de-
scriptions. Time delay has very large distribution range, from
one millisecond to a few hundred milliseconds. The value of
jitter is relatively small, and the theoretically value ranges from
0 to 1, while it typically as a value lower than 0.01. Also, the
value range of the frame complexity is shown in Fig. 4.
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TABLE 11
PARAMETER CONFIGURATION OF THE STANDARDIZATION

Condition Parameter Number B,(0...N-1)

Time Delay 4 0.7,3.6,7.3,100

Jitter 4 1.38,4.6,13.9,20

Frame Complexity 8 15000, 25000, 35000, 45000, 55000, 70000, 90000, 120000

Fig. 4 shows the distribution of the complexity of the video.
Most of the frame complexity is under 10°, and a minority frame
could reach above 4 » 10°. Hence, using the video frame com-
plexity values with large range differences as the input is not ap-
propriate. It is necessary to standardize the data to a consistent
range. We use the following method to perform the standardiza-
tion. Each real number z will be divided into N outputs ranging
between 0 to 1, and the nth output value will be as shown in

. 1
tn = 1+ ewn(bn—2)
4N
wy, = — (2)
r

among which Nand by, are defined by the distribution charac-
teristics of the input data, and r is the possible value range of
the input. For the four above-mentioned condition variables, the
value range of the packet loss is between 0 and 1 and does not re-
quire standardization. The other three condition variables have
the range information shown in Table II when they have been
standardized with (2).

The values in the table were chosen in consideration of the
analysis results for the different time delay distribution and the
frame complicities of different networks. The b, values of the
time delay and the jitter are in accordance with the four different
networks. We obtain 16 output data points after the standardiza-
tion, with the packet loss rate contributing to a total of 17. The
17 data points are used to describe the environment condition
of the system and as the input of the neural network used in the
combination process of the Actor and the Critic.

C. Feedback Updating Mechanism

The Actor always chooses a coding rate at time t—1and then
obtains the reward feedback information that is the adjusted
video quality information. Then, the Critic updates its reward
predicting function using the Q-learning function. The bias of
the Q-learning, that is, the predicting function at time t—1 can
be described by

6 =rt_1 + vValue; — Value, 3)

among which ry_; is the received reward at time t—1, and 7y is
a learning parameter.

The core idea of (3) is to replace the actual reward that will
be obtained by the prediction using the predicting function and
add the rewards received from time t—1 to time t to receive
the reward that should be obtained at time t—1. Some errors
are introduced because the prediction function cannot precisely
reflect the actual rewards that the environment will return for
the theoretical prediction. Somehow, the update mechanism has
proven to be effective. As the learning process continues, the
Value (z) function will approach the actual reward function. As
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Fig. 3 mentioned, the p(z) and o(2) are needed to estimate
the average and the standard deviation, and the Gaussian dis-
tribution random number generator, which generates outputs in
Gaussian distribution with p(z) as its average and o(x) as its
standard deviation, can be used. The output is the video coding
rate under the current situation. Both p(2) and o (z) are the cur-
rent condition functions, and the learning process of the Actor
is the process by which it updates z(z) and o(z) according to
the feedback that came from the Critic. Because of the Actor
output is selected from the Gaussian random number generator,
and the updated rules for u(x) and o(z) are different from the
Value () in the Critic. We used the updated rule based on the
log of the Gaussian distribution. The detailed rule is shown in

Ap=(at1—p1)0
Ao = [(at71 — 1) — 0t712] ) “)

where a;_1 is the output action value at time t—1, oy is the
predicted average and standard deviation of the output at time
t—1, and d equals the feedback that the Critic provides to the
Actor. With the updated rules, the Actor tends to increase the
possibility that actions with positive feedbacks are chosen and to
decrease the possibilities of actions with negative feedbacks. As
the learning process continues, p(z) will approach the optimal
action value, and o () will decrease gradually, narrowing the
range of selectable actions. The Value (2) in the Critic and the
p(z) and o(z) in the Actor are all functions that pertain to the
current condition parameters. We use the BP neural network to
combine these parameters, which involves parts of the updating
rules that will be introduced in detail later.

D. Realization of the Generalization

A common problem in the RL-based approach is the gener-
alization problem, that is, how to handle the scenario when the
agent faces a new condition. For the agent to be able to address
conditions it has never encountered before, the agent must have
the ability to generalize. Function fitting is a popular method
of implementation, and the application of the neural network
is relatively extensive. We uses the three neural networks to fit
the Value (z) in the Critic and p(2) and o(z) in the Actor. The
inputs for those three neural networks, which are the standard-
ized condition values of the environment, are the same. There is
a hidden layer in each neural network, which consists of three
neural units, and there is an output neural unit in the output layer.
The threshold of each neural unit in the neural network is the
differentiable sigmoid function shown as follows:

1
5 % Z Wiz 5)

where w; and x; are the weight and input value of the iy;, input
of the neural unit, respectively. The practice of using three
neural networks to fit the three functions individually ensures
that the three functions will not affect each other when updating
values, which is beneficial for the fitting of the results. The
initial weights of the three networks are random numbers in
the range [—0.1, 0.1]. To accelerate the learning efficiency and
to decrease the error updating practice of the weight, we used
the updating method with eligibility trace, which means that

we only updated the weights that actually worked in the cal-
culation. The method is a relatively widely used and effective
method in the reinforcement learning area, and it could be used
with TD (). The updating rules are as follows for each weight
w in the network:

we = wi_1 + Aw

Aw = ae;_1Ao

o0 =Xy 1+ oo ®

w

where Ao is the error between the output of the neural network
and the actual value, (80)/(Ow) is the partial derivative of the
output to the weight, « is the learning efficiency, e; is the eligi-
bility trace value of w at time ¢, and A is the value of TD(2),
which reflects the reward distribution strategy.

In the neural network of the Value (z), Ao is the 4 in the upper
description. In the neural networks of the u(x) and the o(x},
Ao is the Ay and the Ao in the upper description, respectively.
At each time point of the update in the learning process, the
network weights are updated by (6). The updating method is
a popular one based on the decline of the gradient, with good
theoretical support. The calculations converge to the solution
with the smallest standard deviation error.

E. Adjustment of the Video Coding

The network status condition is received in the format of
RTCP feedback, which has relatively low frequency while at
the same time the video coding has relatively high frequency.
Thus, synchronizing the two is a problem. After conducting
in-depth research, we adopted the following strategy to realize
the condition collecting module. We divided the video frames
into groups, each of which contains two continuous key frames
and the frames between, while waiting for the RTCP feedback.
The complexity of the frames of the group is defined as the av-
erage complexity of all of the frames in the group, and the SSIM
value is defined as the average SSIM values of all of the frames
in the group. We used the frame complexity of the previous
group to calculate the video coding rate for a new group when
there is one, and we borrowed the interface provided by ffmpeg
to make the rate effective. All of the complexity and SSIM in-
formation for each group is stored in the condition information
ROM for updates. When the RTCP feedback is received, the
system calculates the video reward value according to the net-
work condition information from the feedback and the SSIM
stored with (1). For each group of videos collected during the
waiting time, we used the information stored and the network
condition information to update those three neural networks in
the adaptive control system. Then, we adjusted the current net-
work conditions of the three neural networks, and calculated the
new video coding rate and made it effective.

IV. EXPERIMENT AND DISCUSSION

To study the effect of each element in the video transmission
process on the video transmission quality, we need a flexible and
reusable experiment environment. The experiment environment
in the present study, as well as the whole process and tools used
in each stage, will be described in brief. As shown in Fig. 5, the
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Fig. 5. Experiment environment and the process.

entire experiment system is mainly composed of video termi-
nals, network and video evaluation tools. The entire experiment
process is as follows: the sender-side video terminal reads the
video documents selected for test and sends the coded video
flow to the other-side video terminal through the RTP protocol.
The receiver side video terminal decodes and re-constructs the
video image after receiving the video flow that RTP loads, and
the receiver side video terminal then saves the reconstructed
video images into the documents. The video assessment tool
is used to assess the video quality received, taking the original
video and the reconstructed video as the inputs. However, the
video flow may pass various types of networks in the process
of the RTP transmission, which causes problems such as uncer-
tain time delay and packet loss. The receiver-end video terminal
may not be able to obtain a complete well-aligned video flow,
and the reconstruction of the video flow is greatly affected.

Because H.264/AVC is a coding and recoding pattern that is
suitable for network video transmission, it was adopted in the
present study for video coding. The video terminal adopted the
SIP communicator, which supports H.264. We chose the Batch
Video Quality Metric (BVQM), whose assessment is close to
people's objective assessment as a video quality assessment
tool. To describe the time delay distribution precisely, we need
to process the data in Fig. 1(a)—(d). A classic method is to
perform function fitting. With further investigation, we found
that each curve in the Fig. 1(a)—(d) looked like a negative expo-
nential curve; only the length of the tail and the decline speed
of the ordinate differed. To test the idea and to make the process
easy, we chose to use the log value of the ordinate (discard the 0
before log-transforming the value) and then fit the values with
a line. If we obtain a well-fitted line, the upper idea is proved,
and precise descriptions of the time delay distributions of the
four networks will be acquired, as shown in Fig. 6(a)—(d).

Fig. 6(a)—(d) shows the fitting conditions of the four data sets.
The upper part of each picture shows the original time delay and
the fitting line, while the lower part shows the errors in the fit-
ting process. Except for the beginning parts of the last three pic-
tures, the errors are relatively small, and all four time delay dis-

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

LAN Delay Distribution Fitting

WLAN Delay Distribution Fitting

l I L - I |||||IIIIIIII||| ‘ .

£ & 8 10 12 14 16

o ®)

INTERNET Delay Distribution Fitting

'lll'*'l""' —

20 0 & 80 (T @« 2 2 30 0 0
I oo nom of residuate = 4.1227 Linear. norm o residuls = 96792
F 1 2
0 ’lr -.-.—MI-LI]‘IFIJII uw
1t 1 2
- 0 20 % % w0 @« 2 2 0 e

©

(D)
Fig. 6. Fitting condition for the time delay distributions of different networks.
TABLE III
DESCRIPTION OF THE NETWORK CHARACTERISTICS
Network Time Delay Average Time Average Jitter Packet

Type Distribution Delay (ms) (ms) Loss Rete
LAN 2.1 0.5 05 0.05% ‘
‘ WLAN 0246024 417 417 0.12% ‘
CERNET 0.11¢°116 13.09 9.09 031% ‘
INTERNET 0.038¢ 008170 19632 2632 0.48% ‘

tributions are well fitted by the lines. Because the ordinate is the
logarithm value, we can draw the following conclusions: all the
time delay distributions of the four networks are in accordance
with the negative exponential distribution, and the distribution
parameter X is the slope of the line in the corresponding figures.
According to the characteristics of the negative exponential dis-
tribution, the average time delay is 1/, and the average time
jitter equals 1/X as well.

Table III summarizes the upper inference and describes the
characteristics of the four networks precisely. The column of
the packet loss rate is inconsistent with Table I, and the columns
of the average time delay and the time jitter are calculated from
the time delay distribution of the second column. Comparing
Tables I and III, we can see that the values and the statistical
data of the inter-college network and the Internet are very close,
while the Ethernet and wireless LAN differ from each other sig-
nificantly. This result is related to the practice of giving up the
long tail of the statistic, which leads to a relatively conservative
data fitting outcome, that is, the values of the time delay and the
time jitter are narrowed at some level, but there is still inconsis-
tency with the statistics.

According to the upper analysis, we can see that Table III pro-
vides a good summary of the characteristics of the four classic
networks. Therefore, we can use the data in Table III to deter-
mine the parameters of the networks when testing the perfor-
mance of the adaptive system in each network.

The initial parameters used to fit the RL-based approach
are usually random values that require continuous adjustments
through a trial-and-error process. The performance of the
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Fig. 7. VQM values during the learning process under ideal conditions.

whole system is usually very poor in the beginning, and it
sometimes cannot be compared with the original system. After
a period of learning, the performance improves greatly, which
is an important characteristic of machine learning algorithms.
Therefore, we allowed the system to run the learning process
for a long time before we tested the control performance of the
intelligent control system. The entire learning process occurs in
four steps: transfer the test video 100 times in each of the four
networks, during which process the adaptive control system
gains adaptability to special network environments. Ultimately,
test the control capability that the adaptive control system
learns from the four networks with the assessment of the video
quality that the receiver side SIP communicator obtains. To
study the learning process of the adaptive control system, we
recorded the quality of the video received after every five
learning cycles. Fig. 7 shows the quality condition of the video
received in the learning process under ideal conditions.

We can see that the VQM value oscillates as the learning
process goes on, but overall, the trend shows a decline, which
indicates that the video quality is improving. After 80 cycles of
learning, the VQM values remain at a steady value (approxi-
mately 0.2), which means that the intelligent control system has
converged and that the first phase of learning is over.

Fig. 8 shows the video quality during the learning process of
the intelligent control system in four different classic networks
after the first phase of learning.

The RL-based adaptive video transmission control system
does not perform very well in the four networks at first. The
VQM values are very high, and the video qualities are relatively
poor. However, as the learning process progresses, we can see
the significant improving process of the video quality, which
means that the system exhibits strong network adaptability. Ad-
ditionally, we can see that the system converges to an optimal
VQM value at the fastest speed in the LAN and WLAN follows,
and the converging speed is slowest for the Internet. The result
may be related to the similarity degree of each network with the
ideal environment. The comparison of the video qualities of the
RL-based adaptive video transmission after learning and of the
standard H.264 rate control system is shown in Fig. 9.
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Fig. 8. VQM values during the learning process in different networks.
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Fig. 9. VQM comparisons in different networks.

We can see from Fig. 9 that the VQM for RL-based adap-
tive video transmission control system is better than the stan-
dard H.264 rate control system over the four different networks.
The RL-based adaptive video transmission control system im-
proves the video quality, especially in the Internet and CERNET
Network.

V. CONCLUSION AND FUTURE WORK

This paper proposes and realizes a network adaptive video
transmission adaptive control system based on RL-based
approach, and obtaining real-time network information through
RTCP feedback, the H.264 video coding figuration and con-
trolling, a comparison of the proposed RL-based adaptive
controller and the “standard” H.264 rate control algorithm is
also provided, showing the better capability of the proposed
scheme to dynamically satisfy the network condition. Simula-
tion results show that the proposed algorithm keeps both the
video quality and the frame rate above the minimum quality of
experience, also fulfilling the delay requirements. In the future
work, we will consider eliminating some unimportant video
frames to indirectly decrease the coding-rate export.
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