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Abstract With the rapid growth of the mobile devices and the emergence of cloud
computing, mobile cloud computing has gained widespread interest. In mobile cloud
computing, a large-scale collection of mobile devices cooperate with each other to
provide a cloud service at the edge. However, the improper mobile device selection
has a negative effect on the quality of service. Existing methods are difficult to solve
the problem, because they do not take the status and the historical characteristics of
the mobile devices into consideration. This paper introduces a device status-aware
and stability-aware mobile device selection method. Firstly, a model is designed to
store the status and the historical characteristics of each mobile device. Secondly, an
optimized cloud model is employed to evaluate the stability of each mobile device.
Lastly, an optimal mobile device searching algorithm is presented to select the optimal
mobile device. We provide an extensive evaluation of our method. The results show
that our method can increase the quality of mobile cloud service compared with the
traditional method.
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1 Introduction

Mobile device cloud [1,2] has received widespread concern recently. Mobile devices,
such as laptops, tablets and smartphones, have grown increasingly powerful. With the
advent of cloud computing [3–7] and the rapid growth in mobile devices [8,9], many
researchers try to orchestrate a large-scale collection of mobile devices to provide a
cloud service at the edge. To save the execution time and the energy of some low-
energy mobile devices, the researchers try to off-load some computations to nearby
powerful mobile devices. Owners who are willing to share their computation can
receive financial gains.

After receiving a task from a mobile device (the sender, or an off-loader), the
controller needs to assign the task to one or more mobile devices (the receiver, or and
off-loadees) in the mobile device cloud. A core problem is which mobile device to
select. Each device has an available duration. If a device departs before completing
a task, the task should be restarted from the beginning. The quality of service is
negatively affected. The method proposed by [10] considers how to maximize the
lifetime of the mobile device cloud. The off-loadee selection target is obtained by
proposing a method to balance the power across a set of collaborative mobile devices.
Themethod proposed by [11] assumes that the controller perfectly knows the departure
time of each device. However, that is not always the truth. Some dishonest owner may
leave before the declared departure time. A device may shut down because of the use
up of power.

Owing to these drawbacks, a device status-aware and stability-aware mobile device
selection method for mobile cloud service providing is proposed in this paper. Some
devices may join the same mobile device cloud many times. The students have the
same class every day, and go to the same library every night. People are used to going
to the same coffee shop. The mobile device cloud controller can save the information
for future use. The mobile device clouds that belong to the organization can also share
the device historical information with each other. Based on the historical information,
our method includes three steps. In step 1, we design a storagemodel to store the status
and the historical characteristics of each mobile device. In step 2, we extend the cloud
model to a weighted cloud model and employ the weighted cloud model to evaluate
the stability of each mobile device. Based on the evaluation results from step 2, an
optimal mobile device searching algorithm is presented in step 3 to select the optimal
mobile device. We provide an extensive evaluation of our approach. The results show
that our method can increase the quality of cloud mobile service compared with the
traditional methods.

The rest of this paper is organized as follows. Section 2 presents the related work,
followed by the system model in Sect. 3. Section 4 illustrates the detail of our method.
The simulation results are provided in Sect. 5. Finally, we conclude the paper in
Sect. 6.
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2 Related work

There are plenty of researches on mobile device cloud computing in literature. Only
some notable works are reviewed due to space limitation.

To save the execution time and the energy of mobile devices, several works studied
how to off-load parts of mobile applications to the cloud. Off-loading to cloud is
illustrated in Fig. 1.

The number of mobile services has grown rapidly and the execution of mobile
applications consume too much time and energy. Therefore, CloneCloud is proposed
[1]. In CloneCloud, a mobile application is partitioned at a fine granularity by adopt-
ing a combination of static analysis and dynamic profiling. When the application is
executing, some partitions are migrated as a thread to the cloud. When the partitions
have finished, the thread is migrated back to the mobile device.

Mobile services usually are real time and require quick response. However, too
much time is lost because of long setup time and data transfer latency. To attack
the problem, COSMOS [12] was proposed. COSMOS can reduce the lost time by
allocating and scheduling the off-loading requests effectively. In addition, to overcome
the network connectivity problem, the off-loading decision ismade in a risk-controlled
manner.

Although the above-mentioned works can effectively save the execution time and
the energy of mobile devices, these methods migrate a large amount of execution
contexts to the cloud. To solve the problem effectively, a novel method was proposed
by [13]. The method tries to migrate the least execution context to remote cloud. The
target is achieved by predicting the memory contexts that the application may access.
Only the relevant contexts are migrated to the cloud.

Different from the above-mentioned works, other researchers studied how to off-
load parts of mobile applications to the other local mobile devices. Off-loading to
other mobile devices is illustrated in Fig. 2.

Recently, some types of mobile devices are increasingly becoming more and more
powerful, while others have very limited processing capabilities. For example, the
processing capabilities of the wearable computing devices are very limited. This con-
dition allows themobile devices to save time and energy by off-loading to local mobile

Fig. 1 Off-loading to cloud
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Fig. 2 Off-loading to other mobile devices

devices. Based on the condition, the authors in [14] conducted a set of experiments to
investigate the gain in time and energy. They also carry out experiments to test what
kind of services is more suitable to be off-loaded to the mobile device cloud. The
work considered how to maximize the lifetime of the mobile device cloud. The target
is obtained by proposing a method to balance the power across a set of collaborative
mobile devices.

A mobile device cloud control system named FemtoClouds is presented by [11].
Basic functions, such as capability estimation, user profiling, execution prediction,
presence time prediction and task scheduling, can be performed by the system.

However, the above works assume that the departure time of each device is known.
They cannot achieve the optimal effects in mobile device selection for ignoring the
status and the historical characteristics of each devices. For example, some devices are
prone to leaving before declared departure time, or a device shows a decrease in credit.
Each device has an available duration. If a device departs before completing a task,
the task should be restarted from the beginning. The quality of service is negatively
affected. Our method can solve the problem by taking the status and the historical
characteristics of the mobile devices into consideration.

3 System model and expression

We consider the mobile device cloud which is similar to [11]. All mobile device
owners have installed the mobile device cloud client service on their mobile devices.
All mobile device owners are willing to share their computation, but they can receive
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Table 1 List of symbols used

Symbol Description

T A task to be assigned to an off-loadee

D A mobile device belonging to the mobile device cloud

ET(T, D) The estimated execution time if T is assigned to D

WT(T, D) The estimated waiting time if T is assigned to D

DL(T ) The remaining time to the deadline of T

DT(D) The declared departure time of D

AT(D) The actual departure time of D

t A time point

n The number of mobile devices in the mobile device cloud

ST(D) The estimated shutdown time of D because the battery is flat. The value
tends to infinity when the mobile device is in a charging state

Ex Expected value

En Entropy

Ne Hyper-entropy

WExi Weighted expected value of xi
WExi− Weighted expected value of xi−
WS2i− Weighted sample variance of xi−
WEni− Weighted entropy of xi−
WHei− Weighted hyper-entropy of xi−

financial gains. Allmobile devices that arewilling to join a special mobile device cloud
are managed by amobile device cloud controller. In addition, many other functions are
provided by the controller: mobile device discovery, task scheduling, user profiling,
execution time estimation, presence time prediction, and so on. The task size refers
to the length of the execution time in this paper. The task size can be determined by
the presence time prediction module [15]. Every device owner declares the departure
time after joining the mobile device cloud. However, some dishonest devices may
leave before the declared departure time. When a device departs before the assigned
task has been completed, the task should be rescheduled to another device and restarted
from the beginning. “Depart” means that the device leaves the mobile device cloud
and stops sharing its computation.

In addition, the symbols in Table 1 will be used throughout the paper.

4 Optimal mobile device selection

Figure 3 illustrates the framework of our method. Our optimal mobile device selection
method (OMDS) is divided into three phases: mobile device information storage (in
Sect. 4.1), mobile device stability evaluation (in Sect. 4.2), and optimal mobile device
searching (in Sect. 4.3).
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Fig. 3 Framework of our method

4.1 Mobile device information storage

Mobile devices belonging to a mobile device cloud need to exchange application data
and other information with the controller. The controller stores the information of each
mobile device on a local server. In the mobile device selection stage, the controller can
evaluate the mobile devices based on the information. The format of the status data is
as follows:

SD = {eID,Status,Time}, (1)

where eID denotes the ID of the mobile device. Status denotes the status of the mobile
device. When the value of Status is 0, the mobile device is in a charging state. Other-
wise, the value of Status is 1. Time denotes current time.

The format of the historical event data is as follows:

ED = {eID,DT,AT,Source,Time}, (2)

where eID denotes the ID of the mobile device, DT the declared departure time of the
mobile device, AT the actual departure time of the mobile device and Source the cause
of the departure. When the value of Source is 0, the mobile device departs because the
power is used up. When the value of Source is 1, the mobile device departs because
network connection. When the value of Source is 2, the mobile device departed for
the departure of its owner. Time denotes the current time.

4.2 Mobile device stability evaluation

We evaluate the stability of the mobile device based on the mobile device information.
In this paper, stability denotes that the actual departure time is the same as or even
longer than the declared departure time.

We adopt the cloud model to [16–18] evaluate the stability of each mobile device.
In the cloud model, there is a group of cloud drops in the universe, and each cloud
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drop has a numerical value. The overall distribution characteristics of the cloud drops
are reflected by three numerical characteristics: expected value (Ex), entropy (En) and
hyper-entropy (He). Ex denotes the distance to the center of the cloud gravity. En
is used to measure the coverage of the cloud drops, and He is used to measure the
dispersion of the cloud drops. In other words, He can be considered as the entropy of
En. Ex, En and He are calculated by the following:

Ex = 1

m

m∑

i=1

xi (3)

S2 = 1

m − 1

m∑

i=1

(xi − Ex)2 (4)

En =
√

π/2

m

m∑

i=1

|xi − Ex| (5)

He =
√
S2 − En2. (6)

In our context, each record denotes a cloud drop. In mobile device selection, only the
mobile device that leaves before the declared departure time will affect the quality of
the mobile service. The two types of numerical value of a cloud drop are calculated
by the following:

xki = DTk
i − ATk

i (7)

xki− =
{
DTk

i − ATk
i , DTk

i − ATk
i > 0

0, otherwise
, (8)

where k denotes the kth record of the device Di . When there is only one drop, we
think the value of En and He is 0.

Based on the cloud model, the group with smaller En and He is more stable. How-
ever, a dishonest owner may start to keep his promise because of a good incentive
strategy. Therefore, the recent characteristic data are more important than that saved
a long time ago. To attack this problem, we design a weighted cloud model. The three
numerical characteristics in ourweighted cloudmodel are calculated by the following:

WExi = 1

m

m∑

k=1

wk
i x

k
i (9)

WS2i = 1

m − 1

m∑

k=1

(
wk
i

(
xki − Exi

))2
(10)

WEni =
√

π/2

m

m∑

k=1

wk
i

∣∣∣xki − Exi
∣∣∣ (11)

WHei =
√
WS2i − WEn2i (12)
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wk
i = k

1 + 2 + · · · + m
= k

m(m + 1)/2
, (13)

where m denotes the record number of the device Di , and k is the sequence number
of a record. The sequence number of the oldest record is 1.

We adopt the backward cloud generator to evaluate the stability of each mobile
device. The detail of the backward cloud generator is illustrated in algorithm 1.

The time complexity of the backward cloud generator is O(n ∗ m). n denotes the
number of devices, and m denotes the record number of the device. We design an
optimal mobile device searching algorithm based on the numerical characteristics of
the cloud model. The details of our optimal mobile device searching algorithm is
illustrated in the next section.

4.3 Optimal mobile device searching

Algorithm 2 describes our optimal mobile device searching algorithm. The algorithm
traverses the mobile device list and makes schedule decision for the submitted task
using the following steps:

Step 1 Calculate the difference between the presence time and the task size for each
device. Sort the devices based on the results (line 1).

Step 2 Remove all improper devices from the list. If the difference between the
presence time and the task size is smaller than 0, the device cannot complete the task
on time. If the difference between the remaining time and the estimated execution
time is smaller than 0, the device cannot complete the task before the deadline. If the
weight expected value is smaller than 0, there is a very large chance that the owner
will depart before the declared departure time (lines 2 to 7).
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Step 3 Select a small group of candidates from the list. We should make full use of
the time pieces (lines 8 to 12).

Step 4 If there is no candidate in the current interval, we increase the searching
range and go back to step 3 (lines 13 to 15).

Step 5 Traverse the tmpList that stores all candidates. If all nodes in the list have
been visited, go to step 10 (lines 16 to 17).

Step 6 If the weighted Ex of a device is larger than the device behind it, exchange
the place of the two devices. Go to step 5 (lines 18 to 20).

Step 7 Otherwise, if the weighted En of a device is larger than the device behind it,
exchange the place of the two devices. Go to step 5 (lines 22 to 24).

Step 8 Otherwise, if the weighted He of a device is larger than the device behind it,
exchange the place of the two devices. Go to step 5 (lines 26 to 28).

Step 9: Exchange the content of tmpList[l] and tmpList[l+1] (line 31).
Step 10: Return the head of the tmpList (line 36).
Therefore, based on the preceding steps, we obtain an optimal mobile device that

is honest and prone to leaving after the declared time. The time complexity of the
algorithm is O(n2). n denotes the number of devices.

5 Simulation results

To verify the effectiveness of our optimal mobile device selection method, we imple-
ment our method in JAVA and conduct experiments on it. Section 5.1 illustrates our
experimental setting. We then discuss the experimental results and present the advan-
tages of our method in Sect. 5.2.

5.1 Experimental setting

We conduct our experimental results from a PCwith an Intel Core 2 2.0GHz processor
and 4.0GB of RAM. The machine is run on Windows 7, Matlab R2012a and Java
1.6.0. We compare our approach with random device selection RDS [11]. In RDS, the
stability of the mobile devices is ignored. RDS considers whether the mobile device
can complete the task before the declared departure time. The task is assigned to the
mobile device that enables completing the task earlier. The methods are evaluated by
using the following metrics:

1. Total execution time, which can be calculated as follows:

ttotal =
n∑

i=1

(tfinish(Ti ) − tsubmitted(Ti )), (14)

where tfinish denotes the completion time of Ti , and tsubmitted denotes the submis-
sion time of Ti .

123



3232 A. Zhou et al.

2. Total number of reassignment times, which can be calculated as follows:

Ntotal =
n∑

i=1

(Nreassignment(Ti )), (15)

where Nreassignment denotes the reassignment frequency of Ti for the departure of
the mobile devices.

5.2 Experimental results

5.2.1 Results on total execution time

In this section, we study the experimental results on total execution time. There are
1000 mobile devices in the mobile device cloud, and the presence time of each device
is between 30 and 100 min. The task size is between 20 to 60 min. Figure 4 illustrates
the total execution time when the rate of dishonest mobile device increases from 0.02
to 0.1. Figure 5 illustrates the total execution time when the number of tasks increases
from 600 to 900. The figures show that:

• The total execution time of OMDS is less than RDS. Ourmethod shows an average
1.2 % decrease in the total execution time. Because we take the status and stability
of the mobile devices into consideration, we can avoid selecting the dishonest
devices. There is a lower chance that the task execution process is interrupted.
Therefore, our method consumes less total execution time.

• In RDS, total execution time is affected when the rate of dishonest device varies.
Total execution time increases with an increase in the rate of dishonest devices.
But our method is almost not affected by the rate of dishonest devices. When the
rate of dishonest devices increases, there is a higher chance that a task is assigned
to a dishonest device.

Fig. 4 Total execution time under different rates of dishonest devices
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Fig. 5 Total execution time under different number of tasks

• In RDS, the total execution time is affected when the number of tasks varies. The
total execution time increases with an increase in the number of tasks. But our
method is almost not affected by the number of tasks. There is a higher chance
that a task is assigned to a dishonest device when the number of tasks increases.

We will show the results of the total number of reassignment times in the next section.

5.2.2 Results on frequency of reassignment

In this section, we study the experimental results on frequency of reassignment. There
are 1000 mobile devices in the mobile device cloud, and the presence time of each
device is between 30 and 100 min. The task size is between 20 and 60 min. Figure 6
illustrates the frequency of reassignment when the rate of dishonest mobile device
increases from 0.02 to 0.1. Figure 7 illustrates the frequency of reassignment when
the number of tasks increases from 600 to 900. The figures show that:

• Reassignment frequency of OMDS is less than RDS. Our method shows an aver-
age 80 % decrease in the reassignment frequency. Considering the status and the
stability of the mobile devices, we can avoid selecting dishonest devices. There is
a lower chance that the task execution is interrupted because of the departure of
mobile devices.

• In RDS, the reassignment frequency is affected when the rate of dishonest devices
varies. The reassignment frequency increases with an increase in the rate of dis-
honest devices. But our method is almost not affected by the rate of dishonest
devices. When the rate of dishonest devices increases, there is a higher chance that
a task is assigned to a dishonest device.

• In RDS, the reassignment frequency is affected when the number of tasks varies.
The total number of reassignment times increases with an increase in the number
of tasks. But the total number of reassignment times of our method is almost not
affected by the number of tasks. When the number of tasks increases, there is a
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Fig. 6 Reassignment frequency under different rate of dishonest device

Fig. 7 Reassignment frequency under different number of tasks

higher chance that a task is assigned to a dishonest device. The departure of the
dishonest device may result in the interruption of tasks.

6 Conclusions

To assign a task to the optimalmobile device, a status-aware and stability-awaremobile
device selection method is proposed in this paper. Firstly, the status storage model
and the historical characteristics storage model are designed. Secondly, we present a
weighted cloudmodel and employ theweighted cloudmodel to evaluate the stability of
each mobile device. Lastly, we propose an optimal mobile device searching algorithm
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based on the evaluation results from the former step. The experimental results show
the effectiveness of our optimal mobile device selection method.

It remains a task for future works to investigate how to save the network resource
of a mobile device cloud. In addition, we will try to make time–energy tradeoff by
transferring the context.
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