
Cognitive Service in Mobile Edge Computing

Chuntao Ding, Ao Zhou, Xiao Ma, Shangguang Wang∗

State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications, Beijing, China

Email: {ctding, aozhou, maxiao18, sgwang}@bupt.edu.cn

Abstract—Cognitive services have revolutionized the way
we live, work and interact with the world. In recent years,
deep neural networks have become the mainstream approach
in cognitive service, and mobile edge computing facilitates a
variety of cognitive services for users by offloading computation
tasks from resource-limited mobile devices to relatively wealthy
edge servers. Combining the two to provide users with a higher
quality of cognitive service is an issue worth researching.
However, many related studies are not easy to provide fast
responses because in these systems, edge servers are only
used to pre-process data, and the cloud server is used to
perform tasks. In this paper, we aim to study deploying deep
neural network models on edge servers to provide fast services.
However, a single edge server collects only a small amount
of data, which results in low inference accuracy. To address
this problem, we propose a cloud and edge collaboration
framework. The key idea of the proposed framework is to
use a cloud model to assist in training a edge model to
improve the latter’s inference accuracy and enable the latter to
provide fast response and high-performance cognitive service.
Experimental results demonstrate the effectiveness of our
proposed framework.

Keywords-Cognitive service; mobile edge computing; deep
neural networks; collaboration;

I. INTRODUCTION

Ubiquitous mobile devices can be used to provide a vari-
ety of cognitive services 1 [1], [2]. For example, a wearable
camera with the ability to recognize objects and understand
the surrounding environment is helpful for the visually
impaired [3]. On the other hand, deep neural network models
have become the dominant approach because of their good
performance in speech recognition, visual object recognition,
object detection, and many other domains [4]. Due to
limited computation and storage resources, it is challenging
for mobile devices to provide cognitive services with long
duration, fast responses and high inference accuracy. Many
existing cognitive services often rely on remote cloud servers
with powerful computing capabilities. However, cloud-based
solutions may incur long transmission delays since cloud
servers are usually far away from users.

Mobile edge computing (MEC) enables mobile devices
to provide cognitive services with real-time response by
providing computing and storage resources at the edge of the
network [5]–[7]. In recent years, a lot of existing MEC-based

1https://azure.microsoft.com/en-us/services/cognitive-services/

Figure 1. Architecture of the proposed framework.

cognitive services have been proposed [8]–[12]. However, it
is uneasy for them to provide fast responses because in these
systems, edge servers are only used to pre-process data, and
the cloud server is used to perform tasks.

In this paper, we propose a cloud and edge collaboration
framework for cognitive services, as illustrated in Figure 1.
In our framework, there are two neural network models,
CloudNet and EdgeNet. CloudNet is a deep neural network
model, and EdgeNet is a shallow neural network model. The
shallow neural network means that the network has fewer
layers. Inspired by recent advanced research [13], [14], using
the lower layers of neural network model trained on other
datasets to initialize new neural network models can improve
their performance on new datasets, so our goal is to use
CloudNet to assist in training EdgeNet and enables the latter
to provides high quality of services. However, deep neural
network models may leak information about the training
data [15], [16] and cloud servers usually store large amounts
of private data, such as personal images. Motivated by [13],
we use the L (where L is a positive integer) lower layers of
CloudNet to assist in training EdgeNet.

Furthermore, we consider that in real-world scenarios,
users may continuously upload data. This motivated us
to use the continuously uploaded data to further assist in
training EdgeNet. However, the uploaded data is usually
unlabeled, and training EdgeNet directly on edge servers
with unlabeled data is a challenge. One naive solution

Size of images

60K 124K 256K 512K 1024K 2048K 4096K

U
p
lo

a
d
in

g
 t
im

e
 (

s
)

10
-2

10
-1

10
0

10
1

10
2

Uploading images to cloud servers via LTE

Uploading images to edge servers via LTE

Uploading images to cloud servers via WiFi

Uploading images to edge servers via WiFi

Figure 2. Uploading time in LTE and WiFi.

is to utilize manual and machine cooperation annotation
techniques [17], [18] to get the labels of the data and then
use them to assist in training EdgeNet on the edge server.
However, the coverage of a single edge server is limited [19]
and a small amount of data is collected, which is far from
sufficient to significantly improve the inference accuracy of
EdgeNet. To this end, we propose an adaptive algorithm.
With the proposed adaptive algorithm, EdgeNet’s inference
accuracy can be further improved. Note that, CloudNet can
be many other popular deep neural network models such
as VGG [20] and ResNet [21]. Analogously, we can also
design different EdgeNets on edge servers. In this sense, our
framework is general and can be adapted to most existing
neural network models. In summary, this paper makes the
following three major contributions:

• We propose a cloud and edge collaboration framework
that provides users with faster response, longer duration
and high accuracy cognitive services.

• We propose an adaptive algorithm for EdgeNet, which
can further improve its accuracy by using the continu-
ally uploaded data and CloudNet.

• We conduct extensive experiments on different datasets
to evaluate the proposed framework. Results show that
EdgeNet can provide a faster response and the proposed
framework can improve EdgeNet’s inference accuracy.

The following paper is organized as follows. Section II
describes our motivation. Section III shows the detailed
design of the proposed framework. Section IV provides an
experimental evaluation. Section V reviews related work.
Finally, we conclude and outline future work in Section VI.

II. MOTIVATION

In this section, we implement a prototype system to
quantify the fast response provided by MEC architecture.
The experimental environment consists of three components:
mobile device, edge server, and cloud server, and we build
the system based on [22].

Figure 2 shows that in Long-Term Evolution (LTE),
performing the recognition task on the edge server can
reduce the average uploading time by 55.42%, and in WiFi,
performing the recognition task on the edge server can

reduce the average uploading time by 60.73%. This makes
sense intuitively: users are closer to the edge server.

Figure 2 also shows that the very deep neural network
model incurs long inference time. This is because deep
neural network models require abstract images multiple
times, and their inference procedures are complex. The more
convolutional layers are, the longer the inference time is.

Therefore, in order to achieve a fast response of cognitive
service, it is necessary to deploy shallow neural network
models on the edge server. However, a single edge server
collects only a small amount of data, which is not suffi-
cient for training the neural network model to obtain good
performance. This motivates us to study the use of limited
training data to improve the inference accuracy of shallow
neural network models.

III. CLOUD AND EDGE COLLABORATION FRAMEWORK

A. Overview

Figure 3 illustrates our framework, which consists of three
layers of components, namely mobile devices, edge servers,
and cloud servers.

In the proposed framework, these components work
together. Mobile devices include smartphone, Laptop,
Google Glass, Apple Watch, etc. They are responsible for
lightweight tasks such as uploading data to and receiving
results from edge servers. Edge servers are deployed at
the edge of the network and are usually sensors, routers,
and switches. In general, they are responsible for training
EdgeNet and uploading pre-processed data to cloud servers.
Cloud servers are regarded as having rich computation and
storage resources and are responsible for training CloudNet
and sending labels and partial layers to edge servers.

From Figure 3, the image recognition process is as fol-
lows. We first train CloudNet by using a large number of
labeled images. Then, the cloud server sends the L lower
layers of CloudNet to each edge server. After receiving
the L lower layers, each edge server adds H layers to
form the EdgeNet. Follow that, a small number of labeled
images are used to train EdgeNet on the edge server. When
training EdgeNet, L lower layers are frozen and H high
layers are fine-tuned. By doing so, the EdgeNet can improve
its inference accuracy. Furthermore, in real-world scenarios,
users may continuously upload data to edge servers. To
further improve the inference accuracy of the EdgeNet, we
propose an adaptive algorithm by using the continuously
uploaded data and CloudNet.

In the proposed framework, mobile devices only com-
municate with edge servers. When requesting a cognitive
service, the device uploads data to the nearest edge server.
After receiving the uploaded data, the edge server runs
EdgeNet to obtain results and sends back the results to users.
Note that, the interaction between edge servers and cloud
servers is transparent to users.

Figure 3. The detailed process of the proposed framework. When receiving the uploaded images (e.g., Lily, Peony, Cat), the edge server pre-processes it
and performs EdgeNet to obtain results and sends back the results to the user. In addition, the edge server saves the pre-processed images. When the core
network is idle, the edge server uploads the preprocessed images to the cloud server. Then, the cloud server uses all the labeled images (including Lily,
Peony, Cat, etc) to re-train CloudNet. Follow that, the cloud server sends the L lower layers of re-trained CloudNet and labels to each edge server. In the
edge server, the L lower layers of the EdgeNet is replaced by the L lower layers of re-trained CloudNet.

Figure 4. Adaptive phase.

B. An Adaptive Algorithm for EdgeNet

In the proposed framework, we use CloudNet to assist
EdgeNet to improve the latter’s inference accuracy. In addi-
tion, in real-world scenarios, users may continuously request
cognitive services. In deep neural network models, available
training data is extremely important [23]. According to [24],
when the distribution of training data is the same as the
distribution of test data, the probability of the test error
distancing from the upper bound is given by

P (Etest ≤ Etrain +

√
V (log(2N

V)+1)−log(η4)

N) = 1− η
s.t., V � N

,

(1)
where Etest is the test error and Etrain is the training error.
N is the size of the training set and V is the VC dimension
of the classification model. η is a constant and η ∈ [0, 1]. In

addition, where √
V (log(2N

V)+1)−log(η4)

N
, (2)

is called model complexity penalty. From Eq. 2, the larger
N is, the smaller the model complexity penalty is. Hence, to
make the deep neural network model has good generaliza-
tion, a large N is needed to depress the model complexity
penalty.

However, users may continuously upload unlabeled im-
ages. It is challenging to use the unlabeled images to assist
in training EdgeNet. A naive solution is first to get the
labels of the uploaded data by utilizing manual and machine
cooperation annotation techniques. Then, using the labeled
images to assist in training EdgeNet on the edge server.
However, a single edge server only collects little data. How
to use the uploaded unlabeled data to improve the inference
accuracy of EdgeNet is challenging.

To this end, we come up with using the CloudNet and
uploaded data to assist in training EdgeNet together. This
process is continual and illustrated in Figure 4. Users first
upload data to the edge server. After receiving the uploaded
data, the edge server first pre-processes it, such as object
detection and object segmentation. Then, it saves the pre-
processed data and sends it to the cloud server. After
receiving the uploaded pre-processed data, the cloud server
first utilizes annotation techniques to get the labels. Note

that, we assume that the annotation technique always marks
the correct labels for new images, and we leave the error
label situation for our future work. Then, the cloud server
sends the labels to edge servers that stores corresponding
data. We also use the labeled data to re-train CloudNet to
further improve its generalization performance. After that,
the cloud server sends the L lower layers of CloudNet to
each edge server again. In each edge server, the L lower
layers of EdgeNet is replaced by the recently shared L lower
layers. Finally, we use the labeled data on the edge server
to train EdgeNet by freezing L lower layers and fine-tuning
H higher layers.

Formally, we assume that a small amount of labeled
data is stored on the edge server and is represented as
{(xi, yi)}Ni=1, where xi ∈ X and yi ∈ Y , N is the number
of data, xi ∈ Rd and yi ∈ Rc, d is the dimension of xi,
c is the number of classes. We deploy EdgeNet to find a
function f(x;α) ∈ F that describes the relationship between
X and Y , which follows the joint distribution P (X,Y). F
is a class of function from Rd to Rc. The goal of function
f(x;α) is to guarantee the smallest probability of incorrect
classifications. To this end, we first define a loss function
` that penalizes the differences between predictions f(x;α)
and actual targets y. Then, we minimize the average of the
loss function ` over the data distribution P , also known as
the expected risk:

R(f(x;α)) =

∫
`(f(x;α), y)dP (x, y)

=
1

N

N∑
i=1

`(f(xi;α), yi)

, (3)

where the loss function ` can be the cross entropy loss,
e.g., `(y, ŷ) = −

∑c
i=1 yilogŷi, where yi is the true label

of xi, ŷi = f(xi;α). Our goal is to find a function
f(x, α) that guarantees the smallest probability of incorrect
classifications of EdgeNet with limited visual data.

Let Wc denote parameters of CloudNet, Wlc denote
parameters of its pre-L lower layers, We denote parameters
of EdgeNet, and Wle denote parameters of the pre-L lower
layers of EdgeNet. We first train CloudNet with a large
amount of labeled data {(xi, yi)}Mi=1, where M is the
number of data. The loss function is defined as follows:

R(f(x;Wc))=
1
M

∑M
i=1H(f(xi;Wc), yi) . (4)

Then, we send Wlc to each edge server. When receiv-
ing Wlc, the edge server adds H layers based on the L
lower layers to form the EdgeNet. In EdgeNet, we make
Wle = Wlc, and the parameters of the H higher layers are
randomly initialized. Follow that, we train EdgeNet with a
small amount of labeled data {(xi, yi)}Ni=1 by freezing L
lower layers and fine-tuning H higher layers. We use Eq. 3
as the loss function and rewrite it as follows.

R(f(x;We))=
1
N

∑N
i=1H(f(xi;We), yi) . (5)

Algorithm 1: An adaptive algorithm for EdgeNet.

Input: Wc, Wlc, {(xi, yi)}Ni=1, {(xi, yi)}Mi=1,
objects {xi}Ki=1, CloudNet

Output: EdgeNet
1 Wle ← Wlc ;
2 Initialize We−le to small random values, where

We−le = We \Wle;
3 We−le←argminWe−le

R(f(x;We−le));
4 while Iter do
5 The edge server uploads data {xi}Ki=1 to the

cloud server; After receiving {xi}Ki=1, the cloud
server annotates their labels {yi}Ki=1 and sends
{yi}Ki=1 to correspond edge servers;

6 Wc←argminWc
R(f(x;Wc)) with

{(xi, yi)}M+K
i=1 ;

7 Wle ← Wlc ;
8 We−le←argminWe−le

R(f(x;We−le)) with
{(xi, yi)}N+K

i=1 ;
9 We←Wle ∪We−le;

10 Obtain EdgeNet with parameter We;
11 if EdgeNet’s inference accuracy is increasing

then
12 Iter=True
13 else
14 Iter=False
15 end
16 end
17 return EdgeNet;

After receiving the uploaded data, the edge server first
pre-processes and stores it. When the core network is idle,
the edge server uploads it to the cloud server. After receiving
the pre-processed data, we first annotate it and send its labels
to corresponding edge servers.

For ease of explanation, we assume that one cloud server
corresponds to one edge server. Assume that when saving K
pre-processed images, the edge server uploads them to the
cloud server. When receiving the K pre-processed images,
we first annotate them and send their labels to the edge
server. Then, we use the dataset {(xi, yi)}M+K

i=1 to re-train
CloudNet. Follow that, the cloud server sends the Wlc to
the edge server and makes Wle = Wlc. Finally, we use
the dataset {(xi, yi)}N+K

i=1 to re-train EdgeNet. When re-
retraining EdgeNet, we freeze L lower layers and fine-tune
H higher layers. The re-training process of CloudNet and
EdgeNet continues until the inference accuracy of EdgeNet
is no longer increased. Therefore, The upload data and
CloudNet can assist in training EdgeNet to improve its
inference accuracy. Note that, in each iteration, {(xi, yi)}Ki=1

is a new dataset, and the dataset in the edge server and
cloud server adds K samples. The detailed adaptive process
is given in Algorithm 1.

It’s worth noting that there are two ways to train EdgeNet.

Table I
CLOUDNET MODELS WITH DIFFERENT NUMBER OF TRAINING IMAGES

Model
Number of Training images

FASHION-MNIST CIFAR-10 CIFAR-100

CloudNet1 12,000 (89.32%) 10,000 (77.83%) 10,000 (30.64%)

CloudNet2 36,000 (92.90%) 30,000 (85.24%) 30,000(49.84%)

CloudNet3 60,000 (93.32%) 50,000 (88.70%) 50,000 (60.43%)

Figure 5. The detailed structure of CloudNet and EdgeNet. The conv3-32
indicates that the filter size is 3× 3 and the number of channels is 32.

The first way is to freeze the L lower layers and fine-
tune the H higher layers of EdgeNet by using the labeled
images stored on edge servers. The second way is to fine-
tune all parameters, i.e., a complete EdgeNet. In this paper,
we adopt the first way because the second way consumes
more computing and storage resources. Moreover, two ways
have similar inference accuracy. Later experimental results
show that the difference between the inference accuracy of
two ways is relatively minor.

IV. EXPERIMENTS

In this section, we present our experimental results on
three datasets, FASHION-MNIST, CIFAR-10 and CIFAR-
100. In addition, we also evaluate the training time of
EdgeNet.

A. Datasets

Three public datasets are briefly summarized as follows.
FASHION-MNIST [25]. It contains 70K fashion prod-

ucts from 10 classes, with 7K images per class. The training
set has 60K images and the test set has 10K images.

CIFAR-10 and CIFAR-100 [26]. Both contain 50K train-
ing images and 10K testing images. The CIFAR-10 dataset
has 6000 images of each of 10 classes and the CIFAR-100
dataset has 600 images of each of 100 classes.

B. Experimental Setup

We first train three CloudNets: CloudNet1, CloudNet2,
and CloudNet3 have the same architecture, but with differ-
ent training images. Their inference accuracy is shown in
Table I. Then, we denote the shallow neural network model
trained from scratch as EdgeNet0; assisted by CloudNet1
is denoted as EdgeNet1; assisted by CloudNet2 is denoted

Number of images

120 240 360 480 600 960 1200

In
fe

re
n
c
e
 a

c
c
u
ra

c
y
 (

%
)

72

74

76

78

80

82

84

EdgeNet1-freeze

EdgeNet1-fine-tune

(a) FASHION-MNIST

Number of images

10001500200025003000 4000 5000

In
fe

re
n
c
e
 a

c
c
u
ra

c
y
 (

%
)

10

12

14

16

18

EdgeNet1-freeze

EdgeNet1-fine-tune

(b) CIFAR-100 dataset
Figure 6. Inference accuracy of EdgeNet1-freeze and EdgeNet1-fine-tune.
Note that, EdgeNet1-freeze refers to freezing the L lower layers and fine-
tune the H higher layers of EdgeNet1; EdgeNet1-fine-tune refers to fine-
tuning all layers of EdgeNet1.

as EdgeNet2; and assisted by CloudNet3 is denoted as
EdgeNet3.

Figure 5 indicates the detailed structure of CloudNet
and EdgeNet. They consist of four types of conv layers,
some of which are followed by max-pooling layers, and one
fully-connected layer with a final 10-way softmax (100-way
softmax when handling CIFAR-100 dataset). We use one
type of kernel with the size of 3×3 [20]. The fully-connected
layers have 1024 neurons. The same type of conv layers are
connected to one another without any intervening pooling
or normalization layers. Max-pooling is performed over a
2 × 2 pixel window, with stride 1. The dropout ratio is set
to 0.25. The EdgeNet consists of 3 first-type conv layers
of CloudNet. The EdgeNet architecture ends with a max-
pooling layer and a fully-connected layer with a final 10-
way softmax. The fully-connected layer has 1024 neurons.
The max-pooling, dropout ratio and learning rate are same
as CloudNet. In CloudNet and EdgeNet, all conv layers are
equipped with the ReLU.

The training procedures of CloudNets and EdgeNets
follow [20], [21]. We use mini-batch gradient descent to
train CloudNets and EdgeNets models by optimising the
multinomial logistic regression objective. We set the batch
size to 32 and the momentum to 0.9. In addition, we set the
learning rate initially to 0.01, and then reduce the learning
rate by a factor of 10 when the validation setting accuracy
stops improving.

C. Experimental Results

1) Effects of freezing and fine-tuning on EdgeNet: Fig-
ure 6 (a) shows that on the FASHION-MNIST dataset,
the maximum difference in inference accuracy between
EdgeNet1-freeze and EdgeNet1-fine-tune is 0.54%. Figure 6
(b) shows that on the CIFAR-100 dataset, the maximum
difference in inference accuracy between EdgeNet1-freeze
and EdgeNet1-fine-tune is 0.21%. The reason is that these
labeled images have been used to train CloudNet, and the
3 lower layer parameters of EdgeNet1 have inherited the
knowledge that CloudNet learned with these labeled images.
Therefore, they have similar inference accuracy.

2) Inference Accuracy of EdgeNet: Figure 7 shows that
on three datasets, EdgeNet2 is more accurate than EdgeNet1
in different training images. In addition, EdgeNet3 is more

Number of images

120 240 360 480 600 960 1,200

In
fe

re
n

c
e

 a
c
c
u

ra
c
y
 (

%
)

65

70

75

80

85

90

EdgeNet0

EdgeNet1

EdgeNet2

EdgeNet3

(a) FASHION-MNIST dataset

Image of images

100 200 300 400 600 800 1000

In
fe

re
n

c
e

 a
c
c
u

ra
c
y
 (

%
)

10

20

30

40

50

60

EdgeNet0

EdgeNet1

EdgeNet2

EdgeNet3

(b) CIFAR-10 dataset

Number of images

10001500200025003000 4000 5000

In
fe

re
n

c
e

 a
c
c
u

ra
c
y
 (

%
)

5

10

15

20

EdgeNet0

EdgeNet1

EdgeNet2

EdgeNet3

(c) CIFAR-100 dataset

Figure 7. Inference accuracy of EdgeNet0 vs EdgeNet with our framework.

accurate than EdgeNet2. To be exact, Figure 7 (b) shows
that compared with EdgeNet1, when the number of trainable
images is 100, the inference accuracy of EdgeNet2 increased
by 10.24%, the inference accuracy of EdgeNet3 increased
by 17.72%. Similar results can also be found in Figures 7 (a)
and (c). The EdgeNet3 is more accurate than EdgeNet2. This
is because CloudNet3 sends more available knowledge to
EdgeNe3. Other similar reason is that with the accumulation
of images on cloud servers, features extracted from the three
lower layers are more general. Hence, EdgeNet can achieve
higher inference accuracy.

Figure 7 (b) shows that compared with EdgeNet0, on
CIFAR-10 dataset, the inference accuracy of EdgeNet1 can
be increased by 208.7%. Figure 7 (c) shows that compared
with EdgeNet0, on CIFAR-100 dataset, the inference ac-
curacy of EdgeNet1 can be increased by 56.04%. This is
because EdgeNet0 has difficulty learning the distribution of
training images when there are a small number of train-
ing images, resulting in low inference accuracy. However,
CloudNet1 is trained with a large number of training images
to learn the distribution of image data. This indicates that
CloudNet1 can well learn the distribution of training images
and can help EdgeNet1 learn the true distribution by sharing
knowledge (3 lower layers) to EdgeNet1. Hence, CloudNet’s
assistance is beneficial for EdgeNet, especially when there
is a small number of trainable images.

Figure 7 (b) shows that on the CIFAR-10 dataset, when
the number of training images increased from 100 to 1000,
EdgeNet0’s inference accuracy increased by 340.09%, and
EdgeNet3’s inference accuracy increased by 39.22%. The
reason is that a large amount of training image data helps to
reveal the true distribution of image data. The experimental
results also show that it is important to collect enough data
to train neural network models in real-world services.

In addition, we also evaluate the inference accuracy of
EdgeNets as the number of training data increased. Table II
shows that when the number of training images is 60,000, the
inference accuracy of EdgeNet3 is 93.30%, which is similar
to the inference accuracy of CloudNet3 (i.e., 93.32%). The

Table II
INFERENCE ACCURACY ON FASION-MNIST DATASET

Number of training images EdgeNet1 EdgeNet2 EdgeNet3

6000 89.40 90.36 90.77

12000 90.55 91.22 91.30

18000 91.09 91.97 92.14

24000 91.45 91.91 91.98

30000 92.19 92.27 92.82

36000 92.27 92.42 92.83

42000 92.67 92.68 92.83

48000 92.51 92.61 93.11

54000 92.82 92.95 93.12

60000 93.09 93.15 93.30

Three datasets

FASHION-MNIST CIFAR-10 CIFAR-100

T
ra

in
in

g
 T

im
e
 (

s
)

10
1

10
2

10
3

EdgeNet0 EdgeNet1

Figure 8. Training time in different datasets. Note that, there are 120
training images on FASHION-MNIST, 100 training images on the CIFAR-
10 dataset, and 1000 training images on CIFAR-1000 dataset.

results show that with the continuous assistance of Cloud-
Net, EdgeNet can learn how to extract effective features from
CloudNet. The results also indicate that using EdgeNet can
provide a faster response without losing too much accuracy.

3) Training Time of EdgeNet: Figure 8 shows that on the
CIFAR-10 dataset, compared with training EdgeNet from
scratch, the training time of training EdgeNet with the help
of CloudNet can be reduced by 76.40%. This is because

with the guidance of the CloudNet, EdgeNet can easy to
learn the distribution of training data.

Above results show that CloudNet can improve the in-
ference accuracy of EdgeNet by sharing partial layers to
assist in training EdgeNet. Moreover, the inference accuracy
of EdgeNet can be further improved with the assistance of
uploaded data and CloudNet. Therefore, our framework en-
ables mobile devices to provide services with long duration,
fast response and high inference accuracy.

V. RELATED WORK

Existing work on cognitive services can be divided into
three categories: cloud-based cognitive services, device-
based cognitive services and edge-based cognitive services.

Cloud-based cognitive services is to run deep neural
network models on remote cloud servers [27]–[29]. For
example, Gabriel combines the first-person image capture
and sensing capabilities of glass with remote processing
to perform real-time scene interpretation [28]. MCDNN
executes deep neural network models across mobile devices
and cloud servers [29]. Although these approaches can
achieve high inference accuracy, it causes long transmission
delays because the cloud server is far away from users. If
hundreds of millions of users upload data to cloud servers at
the same time, the core network will be overloaded, resulting
in longer transmission delays and even network congestion.

Device-based cognitive service is to run compressed
neural network network models on mobile devices [3],
[30], [31]. A popular approach is to use compression tech-
niques [32] to compress deep neural network models to
reduce its resource demands at the expense of inference ac-
curacy. For example, MobileNets uses depth-wise separable
convolutions to build light weight deep neural networks [30].
NestDNN uses compression techniques to enable resource-
aware multi-tenant on-device deep learning [3]. However,
deploying compressed deep neural network models on mo-
bile devices will reduce the time for mobile devices to
provide services. In addition, the deployed deep neural
network models are static and not easily adaptable.

Edge-based cognitive service refers to the provision of
services based on the MEC architecture. For example, Drolia
et al. [8] modeled edge servers as caches for compute-
intensive recognition applications. Hu et al. [9] proposed
a face identification and resolution scheme based on fog
computing. Li et al. [10] used the first few layers of the
DNNs as a feature extractor to reduce the amount of network
traffic that edge servers upload to cloud servers. Liu et
al. [11] proposed a food recognition system based edge
computing, which first pre-processes the captured image data
on edge servers. Then, edge servers upload the pre-processed
image data to cloud servers. However, it is not easy for
them to provide fast responses, because in these systems,
edge servers are only used to pre-process data, and the cloud
server is used to perform tasks.

VI. CONCLUSION

In this paper, we propose a cloud and edge collaboration
framework that provides cognitive services with high QoS.
In addition, we propose an algorithm to make EdgeNet adap-
tive. EdgeNet’s inference accuracy can be improved with
CloueNet’s shared layers and can be further improved by
continuing to use the uploaded data and CloudNet to assist
with training. Note that, our framework is general and can
be adapted to most high-performance deep neural network
models. Experimental results demonstrate the effectiveness
of our framework and adaptive algorithm.

ACKNOWLEDGMENT

This work was supported by the National Key Research
and Development Program of China (2018YFE0205503), the
Funds for Creative Research Groups of China (61921003),
and the National Natural Science Foundation of China
(61922017).

REFERENCES

[1] Q. Zhu, A. Zhou, Q. Sun, S. Wang, and F. Yang, “Fmsr: A
fariness-aware mobile service recommendation method,” in
Proceedings of the IEEE International Conference on Web
Services, 2018, pp. 171–178.

[2] C. Zhang, B. Liu, J. Y. L. Li, D. Zhang, X. Rui, and R. Bie,
“Hybrid measurement of air quality as a mobile service:
An image based approach,” in Proceedings of the IEEE
International Conference on Web Services, 2017, pp. 853–
856.

[3] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware
multi-tenant on-device deep learning for continuous mobile
vision,” in Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, Oct. 2018,
pp. 115–127.

[4] L. Lin, K. Wang, W. Zuo, M. Wang, J. Luo, and L. Zhang, “A
deep structured model with radius-margin bound for 3d hu-
man activity recognition,” International Journal of Computer
Vision, vol. 118, no. 2, pp. 256–273, 2016.

[5] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service
entity placement for social virtual reality applications in
edge computing,” in Proceedings of the IEEE Conference on
Computer Communications, Apr. 2018, pp. 468–476.

[6] H. Wu, S. Deng, W. Li, J. Yin, X. Li, Z. Feng, and A. Y.
Zomaya, “Mobile-aware service selection in mobile edge
computing systems,” in Proceedings of the IEEE International
Conference on Web Services, 2017, pp. 201–208.

[7] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis,
and A. Paulraj, “Optimal schedule of mobile edge computing
for internet of things using partial information,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 11, pp.
2606–2615, 2017.

[8] U. Drolia, katherine Guo, J. Tan, R. Gandhi, and
P. Narasimhan, “Pull-in time dynamics as a measure of
absolute pressure,” in Proceedings of the IEEE International
Conference on Distributed Computing Systems, Jun. 2017, pp.
276–286.

[9] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing
based face identification and resolution scheme in internet of
things,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 4, pp. 1910–1920, 2017.

[10] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep
learning for the internet of things with edge computing,” IEEE
Network, vol. 32, no. 1, pp. 96–101, 2018.

[11] C. Liu, Y. Cao, G. Chen, V. Vokkarane, Y. Ma, S. Chen,
and P. Hou, “A new deep learning-based food recognition
system for dietary assessment on an edge computing service
infrastructure,” IEEE Transactions on Services Computing,
vol. 11, no. 2, pp. 249–261, 2018.

[12] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and
W. B. Heinzelman, “Cloud-vision: Real-time face recognition
using a mobile-cloudlet-cloud acceleration architecture,” in
Proceedings of the IEEE Symposium on Computers and
Communications, Jul. 2012, pp. 59–66.

[13] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How trans-
ferable are features in deep neural networks?” in Proceedings
of the International Conference in Neural Information Pro-
cessing Systems, Dec. 2014, pp. 3320–3328.

[14] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning
transferable features with deep adaptation networks,” in Pro-
ceedings of the 32nd International Conference on Machine
Learning, Jul. 2015, pp. 97–105.

[15] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning
models that remember too much,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications
Security, Nov. 2017, pp. 587–601.

[16] G. Ateniese, G. Felici, L. V. Mancini, A. Spognardi, A. Vil-
lani, and D. Vitali, “Hacking smart machines with smarter
ones: How to extract meaningful data from machine learning
classifiers,” International Journal of Security and Networks,
vol. 10, no. 3, pp. 137–150, 2015.

[17] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari,
“Extreme clicking for efficient object annotation,” in Pro-
ceedings of the IEEE International Conference on Computer
Vision, Oct. 2017, pp. 4940–4949.

[18] L. Castrejon, K. Kundu, R. Urtasun, and S. Fidler, “Anno-
tating object instances with a polygon-rnn,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, Jul. 2017, pp. 4485–4493.

[19] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in
Proceedings of the IEEE Conference on Computer Commu-
nications, Jun. 2018, pp. 207–215.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the 3rd International Conference on Learning Representation,
May 2015, pp. 1–14.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[22] S. Wang, C. Ding, N. Zhang, X. Liu, A. Zhou, J. Cao, and
X. S. Shen, “A cloud-guided feature extraction approach for
image retrieval in mobile edge computing,” IEEE Transac-
tions on Mobile Computing, pp. 1–14, 2019.

[23] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting
unreasonable effectiveness of data in deep learning era,”
in Proceedings of the IEEE International Conference on
Computer Vision, Oct. 2017, pp. 843–852.

[24] V. N. Vapnik, The Nature of Statistical Learning Theory.
Heidelberg: Springer-Verlag Berlin, 1995.

[25] “The Fashion MNIST Dataset,” https://www.kaggle.com/
zalando-research/fashionmnist, [Online; accessed 18-June-
2019].

[26] “The CIFAR10 and CIFAR100 datasets,” https://www.
cs.toronto.edu/∼kriz/cifar.html, [Online; accessed 18-June-
2019].

[27] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: making smart-
phones last longer with code offload,” in Proceedings of the
8th International Conference on Mobile Systems, applica-
tions, and services, Jun. 2010, pp. 49–62.

[28] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan, “Towards wearable cognitive assistance,” in Pro-
ceedings of the 12th annual international conference on
Mobile Systems, Jun. 2014, pp. 68–81.

[29] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, “Mcdnn: An approximation-based execu-
tion framework for deep stream processing under resource
constraints,” in Proceedings of the 14th Annual International
Conference on Mobile Systems, Jun. 2016, pp. 123–136.

[30] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” in arxiv:1704.04861, Apr. 2017, pp. 1–9.

[31] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile
gpu-based deep learning framework for continuous vision
applications,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services,
Jun. 2017, pp. 82–95.

[32] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowl-
edge in a neural network,” in CoRR abs/1503.02531, Mar.
2015, pp. 1–9.

https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/zalando-research/fashionmnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Motivation
	Cloud and Edge Collaboration Framework
	Overview
	An Adaptive Algorithm for EdgeNet

	Experiments
	Datasets
	Experimental Setup
	Experimental Results
	Effects of freezing and fine-tuning on EdgeNet
	Inference Accuracy of EdgeNet
	Training Time of EdgeNet

	Related Work
	Conclusion
	References

