IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

User-Oriented Edge Node Grouping in Mobile
Edge Computing

Qing Li, Xiao Ma, Member, IEEE, Ao Zhou, Member, IEEE, Xiapu Luo, Member, IEEE, Fangchun
Yang, Senior Member, IEEE, and Shangguang Wang, Senior Member, IEEE

Abstract—In mobile edge computing networks, densely deployed access points are empowered with computation and storage
capacities. This brings benefits of enlarged edge capacity, ultra-low latency, and reduced backhaul congestion. This paper concerns
edge node grouping in mobile edge computing, where multiple edge nodes serve one end user cooperatively to enhance user
experience. Most existing studies focus on centralized schemes that have to collect global information and thus induce high overhead.
Although some recent studies propose efficient decentralized schemes, most of them did not consider the system uncertainty from
both the wireless environment and other users. To tackle the aforementioned problems, we first formulate the edge node grouping
problem as a game that is proved to be an exact potential game with a unique Nash equilibrium. Then, we propose a novel
decentralized learning-based edge node grouping algorithm, which guides users to make decisions by learning from historical
feedback. Furthermore, we investigate two extended scenarios by generalizing our computation model and communication model,
respectively. We further prove that our algorithms converge to the Nash equilibrium with upper-bounded learning loss. Simulation
results show that our mechanisms can achieve up to 96.99% of the oracle benchmark.

Index Terms—Mobile edge computing, edge node grouping, game theory, reinforcement learning.

1 INTRODUCTION

Mobile edge computing provides cloud-like capabilities in
proximity to end-users by equipping the network edge
with computational and storage resources [1, 2]. Endowing
densely deployed access points with edge servers is one
of the main forms of edge computing deployment in 5G
networks [3]. It brings many benefits, such as augmented
computation capacity, ultra-low latency, and reduced back-
haul congestion [4]. In such edge computing networks, it is
hard for any individual edge node to provide guaranteed
quality of service for users due to the limited computation
capacity, radio coverage, and unpredicted wireless environ-
ment. With the dense deployment of edge nodes, it becomes
possible that multiple edge nodes serve a single user coop-
eratively such that user experience can be enhanced.

This paper concerns the edge node grouping problem
where each user selects multiple edge nodes to form a group
to execute tasks in parallel. While cooperative computation
brings many benefits, the dynamics of the wireless environ-
ment and limitation of edge node capacities can influence
user experience. Besides, when multiple users offload tasks
to an identical edge node, competition for the communica-
tion and computation resources will deteriorate cooperative
computation performance. Hence, it is non-trivial to prop-
erly choose an edge node group for each user to adapt to
wireless environment dynamics and peer competition. Most

e Qing Li, Xiao Ma, Ao Zhou, Fangchun Yang, and Shangguang Wang are
with the State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China.
E-mail: {g_li;maxiaol8;aozhou,fcyang;sgwang }@bupt.edu.cn. Xiao Ma is
the corresponding author.

e Xiapu Luo is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong, China.

E-mail: csxluo@comp.polyu.edu.hk.

pioneering studies [5-22] adopt the centralized architecture,
which requires collecting global information (from users,
edge nodes, and network environment) and thus causes
high overhead, especially in large scale networks. Dis-
tributed schemes [23-27] have been recently proposed based
on game theory, where each user makes its computation
offloading decision autonomously. These works have one
key limitation that they did not consider system uncertainty
from both the wireless environment and other users, which
is usually impractical. First, the wireless environment is
highly time-varying and hard to learn in advance while
most decentralized schemes [23-26] assume that wireless
environment information is known before making decisions.
Second, selfish users are reluctant to share their strategies
when competing for resources while all the decentralized
schemes assume that each user knows the strategies of the
other users.

To address the aforementioned limitations, we focus
on edge node grouping under dual uncertainty from both
the wireless environment and the other users. First, since
the wireless environment information is unknown before
making decisions, each user has to learn edge node group-
ing strategies from the feedback of historical decisions.
Second, when multiple users make edge node grouping
decisions simultaneously without joint strategy profiles,
they are oblivious to others” actions, which may undermine
the convergence and incur large learning performance loss.
Third, feedback may be delayed due to the poor wireless
environment or the limited computational capacity in edge
nodes. This delay may cause disorder and absent feedback
and result in learning performance loss.

In this paper, we propose a novel decentralized learning
mechanism to solve the edge node grouping problem in
mobile edge computing by leveraging game theory and

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

reinforcement learning. Specifically, we model the multi-
user edge node grouping problem as a game, where each
user selects an edge node group to maximize its long-term
energy-aware utility. We prove that the game is an exact
potential game with a unique Nash Equilibrium (NE). To
cope with the unknown wireless environment information,
we introduce the reinforcement learning mechanism into
the game model. In the game, each user learns its strategy
from historical feedback (of edge nodes) via trial-and-error
interactions with other users and the dynamic wireless
environment. To tackle the absence of other users’ strategies,
we employ better-response dynamics [28] and no-regret
dynamics [29] to guide each user to respond to other users
based on feedback. Besides, we further investigate the edge
node grouping problem in two extended scenarios. In the
first extended scenario, feedback is delayed due to limited
computation capacity and we enhance our algorithms by
adding a feedback queue for each strategy to adapt to the
scenario with delayed feedback. In the second extended
scenario, we prove that our algorithms can be applied to
another common access scenario where each edge node has
multiple frequency bands.

In summary, we have the following major contributions.

o We investigate decentralized mechanisms for edge
node grouping. We formulate this problem as a non-
cooperative game and prove that it is an exact poten-
tial game with a unique NE.

e To deal with the system uncertainty from both
wireless environment and other users, we propose
a novel decentralized learning-based edge node
grouping algorithm by leveraging better-response
dynamics and no-regret dynamics. It is proved that
the mechanism admits NE with bounded learning
loss.

o We extend our study to two scenarios i.e., the sce-
nario with delayed feedback and the scenario where
each edge node has multiple frequency bands.

e Simulations demonstrate that our mechanisms can
converge to NE with no-regret and achieve 96.99% of
the oracle benchmark.

The remainder of this paper is organized as follows. We
introduce the related work in Section 2. We describe the
system model and formulate the edge node grouping game
in Section 3. In Section 4, we design the distributed learning-
based edge node grouping algorithm. In Section 5, we
discuss two extended scenarios. The simulation results are
illustrated in Section 6. We conclude in Section 7.

2 RELATED WORKS

In this section, we analyze the related works which can be
divided into two categories: centralized schemes and game
theory based decentralized schemes.

Centralized Cooperative Computation Schemes [5-22].
Cooperative computation has obvious advantages in reduc-
ing computation delay by parallelizing the algorithm of
computation and distributing the computation workload to
different parts. We divide these works into two categories:
offline schemes and online schemes. The offline schemes are
as follows. Gong [5] provides some useful insights for the

2

optimal computation-communication co-design for parallel
computing to reduce delays in mobile edge computing.
Kim et al. [8] develop an optimization methodology for
communication resource management in wireless D2D net-
works to maximize energy efficiency. Zhu et al. [9] study
multiple servers cooperatively computing a set of interde-
pendent tasks. Chen et al. [13] propose a tripartite dynamic
cooperation framework among unmanned aerial vehicles,
unmanned ground vehicles, and base stations during the
post-disaster rescue. Funai et al. [17] provide insight into
how communication and computation complexity affect the
distribution of tasks in a cooperative multi-hop ad hoc
network, and show the achievable trade-offs in terms of
computational delay and network lifetime. Lin et al. [10]
exploit abundant computation resources distributed at mas-
sive wireless devices for cooperative computing to enhance
the computation performance. All the above works make
offloading decisions at the compile-time, where all required
information is available. It needs complete information
about the system and provides solutions that satisfy the
given requirements. For example, Gong [5] assumes full
information knowledge before decision making, such as
orders of forward and backward communications between
edge devices, delays of forward and backward communi-
cations, the total computation workload, and computation
rates of edge devices.

For online schemes, He et al. [22] propose an auction-
based incentive mechanism, where users participate in the
system dynamically. Kao ef al. [18] propose a novel algo-
rithm that learns the performance of unknown devices and
channel qualities through exploratory probing and makes
task assignment decisions by exploiting the gained knowl-
edge. Feng et al. [15] develop a cooperative computation
offloading and resource allocation algorithm to maximize
the computation rate of mobile edge computing systems. He
et al. [19] explore a novel cooperative offloading mechanism
based on deep reinforcement learning to improve the QoE of
users. Cui et al. [20] propose a software-defined cooperative
offloading model and design an online task scheduling
algorithm to save mobile devices’ energy and reduce the
traffic on access links. Chen ef al. [21] study cooperation
among edge nodes via workload peer offloading. All these
works make offloading decisions during the run-time of the
system. The decisions are based on both process character-
istics and the current state of the system. We notice that
online schemes can accommodate dynamic changes in the
system without requiring information about future system
dynamics by leveraging the Lyapunov technique, but they
cannot make the best use of system resources to provide
optimal offloading decisions.

All the above works focus on centralized cooperative
computation and require global information about user de-
mands and system resources to make offloading decisions.
The centralized schemes can potentially find a globally
optimal solution. However, they are vulnerable regarding
the scalability and the computational complexity issue.

Decentralized Schemes Based on Game Theory [23-27].
Unlike centralized schemes, decentralized schemes consider
multiple authority and orchestrator nodes to make offload-
ing decisions. Generally distributed in the network, the
management elements compute offloading decisions based

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

TABLE 1: Related Work Comparison.

References | Centralized/ Decentralized | Online/ Offline | Mathematical method Key assumptions

[5-7] Centralized Offline Heuristic method Global information

[8-12] Centralized Offline Convex optimization Global information

[13, 14] Centralized Offline Mixed integer linear programming Global information

[15] Centralized Offline Matching theory Global information

[16-19] Centralized Online Reinforcement learning Global information

[20, 21] Centralized Online Stochastic optimization Global information

[22] Centralized Online Auction mechanism Global information

[23-26] Decentralized Offline Game theory Local complete information
[27] Decentralized Online Game theory and reinforcement learning Unknown CSI

Ours Decentralized Online Game theory and reinforcement learning | Unknown CSI and joint strategy

on local resources and information. This is more flexible
and can be more efficient to handle the dynamic changes
of infrastructure like edge computing without resorting
to network-wide computations. The decentralized schemes
help to address the scalability and the locality awareness
issues and allow offloading decisions that best fit with
the local context. However, no guarantees are provided
regarding the global optimality of the computed solutions.
The authors design a decentralized potential game based
offloading algorithm to minimize the cost of each mobile
device in both [23] and [24]. Chen et al. [25] devise a
distributed computation offloading algorithm that achieves
an NE of the multi-user computation offloading game. They
derive the upper bound of the convergence time under mild
conditions. Gao et al. [26] propose a two-level decentralized
approach in network coding assisted D2D communications.
Dinh et al. [27] adopt an unknown payoff game framework
and propose a reinforcement learning offloading mechanism
that helps users learn their long-term offloading strategies to
maximize their long-term utilities. All these works [23-27]
cannot address the system uncertainty from both wireless
environment and other users. To address these limitations,
our work devotes efforts to grouping edge nodes without
knowing both the wireless channel state and other users’
strategies. We summarize the comparison of related works
from four important dimensions: online/offline, central-
ized/decentralized, the mathematical method they applied,
and information collecting assumptions as in Table 1.

3 SyYSTEM MODEL

In the mobile edge computing networks, the macro base
station confirms the complete coverage of User Equipments
(UEs). Both the macro base station and other access points
(e.g., micro base stations) are equipped with edge servers
and named edge nodes. The edge nodes provide com-
putation and storage capabilities for UEs. We investigate
grouping among densely deployed edge nodes to enable
flexible cooperative computation for each UE dynamically.
To better capture the system dynamics, the system is as-
sumed to operate in a slotted structure and its timeline is
discretized into time slots {1 < t < T}. Each time slot
is a decision round with a duration of 79", Each UE has
a computation-intensive task with a large amount of data
to offload to edge nodes for processing. Autonomous UEs
choose proper edge nodes to form an edge node group and

schedule the transmission power among edge nodes in its
group. We consider that the task is divisible without task
dependency. Typical examples are virus scanning and video
streaming analytics [27]. For these tasks, the execution time
can be much longer (e.g., several hours) compared with the
duration of each decision round (e.g., tens of milliseconds).
In each time slot, the cooperative computation procedure
works as follows.

Cooperative Computation Procedure. 1) Task Preprocess-
ing: Each UE divides the tasks into sub-tasks for cooperative
computation. 2) Edge Node Grouping: Each UE performs the
edge node grouping scheme shown as follows. 3) Task Trans-
mitting: Each UE offloads the sub-tasks to the edge nodes in
its group. 4) Task Processing: edge nodes in the group of each
UE process offloaded tasks. 5) Result Returning: edge nodes
return the results to UEs after completing the computation.
In addition, UEs are informed of the transmitted data size
to each edge node, which is called feedback.

Edge Node Grouping Scheme. 1) Preparation: When a
UE has task requests, it selects several edge nodes as a
candidate set according to the received signal strength. 2)
Decision Making: According to the proposed algorithm in
Section 4, the UE chooses a group of edge nodes from the
candidate set and allocates its transmission power among all
the edge nodes in its group. If the size of the candidate set
is smaller than the group size, UE chooses the candidate set
as the serving group directly. If the candidate set is empty,
the UE offloads tasks to the macro base station. 3) Execution:
The UE and edge nodes in its group complete the connection
process assisted by the macro base station.

3.1 Edge Node Grouping Strategy

We assume that there are a UEset N = {1,2,--- , N} and an
edge node set M = {1,2,--- ,M}. Leta] = (af;,...,a; 5/
denote the M dimensional association vector between UE
1 and edge nodes in slot ¢. If UE ¢ offloads its task to edge
node j (1 < j < M) at time slot ¢, then azj = 1, otherwise
a; ; = 0. Edge node grouping modes can be classified into
number-based cooperation modes [30] and distance-based
cooperation modes [31]. In the former, each UE offloads its
task to a constant number L edge nodes simultaneously.
In the latter, each UE is served by all edge nodes within
a certain distance. It is hard to implement the distance-
based cooperation mode in practice because a user does not
directly know its distances to edge nodes when making edge

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

node grouping decisions [32]. Hence, this paper adopts the
number-based cooperation mode for edge node grouping,

ie., o

Y al;=LVieN,1<t<T. 1)

j=1
where L is the edge node group size. We assume that the
transmission power is quantified into discrete levels. UE ¢
adjusts transmission power p} ; on the wireless link of edge
node j in time slot ¢. The sum of transmission power on
the wireless links of different edge nodes cannot exceed the
maximal transmission power P; jax,

M
szyspzmax,VZ€N1<t<T (2)

Jj=1

We denote the edge node grouping strategy of UE i at time
slott as s = {a}, g P i ;- The joint strategy of all UEs at time

slot ¢ is s' = (sl,~-- ,stooo sh)and liesin S = [[S;
ieN
where S; refers to the domain of s!, (1 < ¢ < T'). The joint

strategy across all time slots is {s!,--- s, .-+ sT}.

3.2 Communication Model

In the wireless communication model, edge nodes are as-
sumed to transmit tasks over non-overlapping frequency
bands such that inter-cell interference can be avoided in the
uplink [33]. Similar to [25, 27], we focus on exploring the
wireless interference model where multiple UEs connected
to the same edge node share the spectrum band of the
edge node. This can be realized by some physical layer
channel access scheme (e.g., code division multiple access).
We compute the total transmission rate of UE i as [27],

ht

zyng

N0+ >
meN\{i}

Z W log, o |

®)
where W; is the channel bandwidth, Ny represents the back-
ground noise power, and hj ; is the channel gain between
UE i and edge node j. Uplink inter-UE interference occurs
when multiple UEs simultaneously transmit to the same
edge node. The transmission energy consumption of UE 1%
is

m]pmj

M

— Ttrans Z ai,jp;ja (4)
j=1

Ej(s;)

where T8 ig the duration of the transmission period and
identical for all UEs. We will analyze the scenario in which
each edge node has multiple frequency bands in Section 5.2.

3.3 Computation Model

We consider the elastic capacity model where edge nodes
have sufficient computation resources and the computation
capacities can scale with task requests. The computation
delay at each edge node is relatively small and the com-
putation result and feedback can be returned timely in the
current time slot. We denote the amount of the received CPU
cycles by UE i in time slot ¢ as,

Fit (St) — HTtranst (St)7 (5)

4

where xk means the amount of CPU cycles needed for
processing one unit of data. We will discuss the extended
scenario where each edge node has a fixed computation
capacity, which can lead to delayed feedback in Section 5.1.

3.4 Utility Function

Since tasks of each UE will last a long time, it makes
sense for each UE to opportunistically obtain as many CPU
cycles to finish the task earlier. The amount of received
CPU cycles is linear with the data transmission rate as in
(5). Therefore, each UE will increase its transmission power
levels to maximize the data transmission rate in each time
slot according to (3). This will increase energy consumption
but may not improve performance due to communication
interference among UEs. Hence, we define an energy-aware
utility model,

Ui (s') = MF (") = M Ei(s)), (6)

where A1, A2 € [0, 00) are weight factors. The weight factors
reflect the relative importance between the received CPU
cycles and energy consumption. We define payoff as the
long-term average utility,

U(s',---,s") = lim

T
Z @)

3.5 Problem Formulation

In this section, we introduce the repeated game with un-
known payoff framework, where players repeatedly play
the same one-shot game simultaneously with unknown
payoff [28]. The one-shot game is called a stage game. Each
time slot is a game stage. We formulate the problem as a
repeated edge node grouping game characterized by the
tuple G = {N,{s!, - ,sT},{U}ien’}, where each UE i
makes edge node grouping strategy (including edge node
grouping and transmission power allocation) repeatedly to
maximize its long-term averaged utility over all T’ time slots.

Yie N max U. (8)
sl Ly ,sT es
We define the stage game of G as G =

{N,{si}iens {U;}ien'}, where we omit the superscript
t. In repeated games with perfect information, a player
has observations on the environment information and
historical joint strategies of all the players before choosing
his strategy for the current stage game. In this paper, UEs
cannot obtain full Channel State Information (CSI) and
edge node grouping strategies of other UEs. Hence, we
focus on the edge node grouping game with imperfect
information. Fortunately, the influence of the wireless
environment and other UEs can be obtained by the signal
to interference and noise ratio. Therefore, we can drive an
aggregated information of CSI and other UEs’ strategies
from the feedback about the data transmission rate. For
edge node j with a; ; = 1, the aggregated information of
other UE strategies I_; ; in edge node j at time slot ¢ can be
expressed as,
ht,
I' = .)

NO + Z me]ht
meN\{i}

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021 5
M N N M

W(sis_i) =T [A / > W log, (No +> ai,jpi,jhi,j> frdhiy - dhiny i — A2 YD ab i |- (13)
H =1 =1 =1 j=1

From (3), the aggregated information can be calculated as

t
Rig

2% —1

t t
i,5Pi,5

It

—i,5 — 5 (10)
where R; ; denotes the data transmission rate between
UE ¢ and edge node j, and can be calculated from the
feedback following (10). For edge node j with a; ; = 0, UE
1 transmits pilot signals with low power and the aggregated
information can also be obtained from (10). Consequently,
the aggregated information of other UEs’ strategies can be
calculated. Note that collecting the aggregated information
causes neglected overhead in communication for each UE.

4 ALGORITHM DESIGN
4.1 Preliminaries

We will design algorithms based on the game structure. It is
helpful to analyze the property of the repeated game before
designing algorithms. Since the repeated game consists of
many stage games, we start by analyzing the stage game G'.

Definition 1. A strateQy profile s* = (s}, -+ ,s%) is a Nash
equilibrium of the edge node grouping stage game G', if no
UE can further increase its utility by unilaterally changing its
strategy, i.e.,

Ui(s],s™;) > U(s;,s%,), Vs, €S, (11)

Definition 2. A game is an exact potential game if there exists a
potential function 1 (s) : S — R such that for every UE i € N
S$—i € I Sm, siss; € S,, it is satisfied that
m#i

ui(s’llw S*i) - Z/{i(si7 s*i) = d)(S:lv Sfi) - w(sh sfi), (12)
Theorem 1. The stage game G' = {N, {s;}ienr, {Ui}ien'} is
an exact potential game with the potential function in (13), where
H = {h}} is the matrix of the channel gain. fu is the joint
distribution of H.

Proof. The key idea is to prove the potential function ¢(s) in
(13) satisfies Definition 2. From (3)-(6), we have (14), where
H_; is the vector of H without (hf, ---h} /); and fu_, is
the joint distribution of H_;. U;(s’,s_;) — U;(s;,s_;) can be
derived in (15). ¢(s}, s_;) —1(s;, s_;) can be derived in (16).
We can derive that U;(s],s_;) — Ui(si,s_;) = (s}, s_;) —
1(s4,8_;). Thus, G’ is an exact potential game, which always
has an NE and finite improvement property [34]. O

Theorem 1 guarantees the existence and uniqueness of
NE of game G’ which has finite improvement property [34].
From Theorem 2 of [35], if s} is the unique NE of the %
stage game G', {s;}]_, is the unique NE of the repeated
game G.

If each UE has full CSI information and joint strategies
of other UEs before choosing their strategies for the cur-
rent stage game, the repeated game G can be transformed
into the stage game G’ repeated in each time slot. In this
case, the best-response dynamics based edge node grouping

Algorithm 1 Best-Response Based Edge Node Grouping

1: fort=1,---,T do

2. Vi €N, s; is selected with probability ﬁ ;

3: while s is not an NE (s must hold for at leat Tjse,
iterations to be an NE) do

4 UE i is randomly chosen to alter its action;

5 fors, =1,---,|S;| do

6 s < {s},s_;};

7: Calculate the utility according to (6);

8 end for

9: Calculate s} according to (17).

10: Vi e N, U; < U(s).

11: end while

12: end for

algorithm [34] can provide the performance upper bound
theoretically. We summarize the oracle benchmark for the
stage game in Algorithm 1. In the beginning, each UE
randomly selects its strategy and receives the initial utility
(Line 2). At each iteration of the stage game, the algorithm
randomly chooses a UE to perform the best-response to the
strategies of other UEs (Line 9) as,

s* = arg max U;(s;,s_;). 17)

S8;€S5;
According to the finite improvement property of potential
games and Theorem 2 of [35], Algorithm 1 can achieve the
NE of game G by iteratively updating their strategies.

4.2 Algorithm Overview

The best-response dynamics fails in our scenario with un-
known CSI and unavailable joint strategies of other UEs.
We propose a decentralized learning-based algorithm (i.e.,
Algorithm 3) to solve this problem. Two common evaluation
criteria for learning algorithms in games are convergence
[27] and regret [36]. Convergence measures if players can
reach equilibrium. Regret measures how worse an algorithm
performs compared to the best static strategy. We seek to
improve both criteria by proposing Algorithm 3. To address
the issue of convergence with unknown CSI, we combines
the better-response with inertia dynamics and Q-learning in
the primary learning phase following previous work [28]. To
address the issue of unavailable joint strategies of other UEs,
we exploit the aggregated inference information to know the
influence of other UEs (Section 4.3.1). To further reduce the
learning loss, we propose a secondary learning phase based
on no-regret dynamics (Section 4.3.2).

4.2.1

We first review the better-response with inertia process
defined in [28]. In each time slot ¢, with probability »;
(the inertia factor), the UE i selects the same strategy s:™*
as in the previous slot. With probability 1 — 7;, the UE ¢
selects the current strategy s! according to a distribution that
puts positive probability only on strategies that are better

Q-Learning Better-Response Process with Inertia

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021 6
M N M
U; = Eg[Uf] = \iT"e / > Wjlog, (No + Za;jp;jh;j> Fa()dhs s - - dhinrp g — AT " aiipi; (14)
H j=1 i=1 j=1
M
—)\mTt”"S/ZWJ logy | No + Z i Pmi P | fa_ (Ydhi s dhi_y - dhiy ol - - dRiacy -
Ui(si,s—i) —Ui(siys—i) = /\mT”‘”‘Sf Z W; log, (No + aj ;pi ;i + AZ/\{ }am,jpm,jhfn,j> fu()dhi - dhiy v (15)
me 3
-\ HTtransf Z W; logs <N0 + ai,jpihi; + AZ[Gm,jPm,j m]> fu()dnt ;- dthy‘M‘
meN\{i}
t M / /
,AQT rans Zl ai,jpi j Z a; iPij | -
=
P(sh,s_i) —(si,8-i) = MrT™S f Z W; log, (No + aj ;pi ki + AX[: Am,jPm.,jh > fa()dhiy - dhiy g (16)
meN\{i}
— MR [Z Wjlogy | No+aijpijhi; + > mipm,jhin; | fu(dhi - dhiy
Hj=1 meN\{i}

M

—)\ Ttrans Za’. ol
2 . i,5P%,5

j=

Algorithm 2 Q-Learning Better-Response Process with Iner-
tia
1. fort=1,---
2: Att =1, all UEs start with a random strategy.
3: Attt > 1, each UE selects its new strategy as follows.
4: e With probability €, s! is chosen with probability

(2

,T do

|5

5. e With probability 1 — €,

6: o with probability 7;, s — st t

7: o with probability 1 — n;, choose a strategy from
Bi1(s_;) randomly. If B! ' (s_;) = &, st < s; "

8: end for

than the previous strategy sﬁ_l. Better-response with inertia
dynamics is proven to converge to the NE of potential
games [28]. Then, we introduce the notation B! as the better-
response set for UE 7 at ¢ given other UEs’ strategies s_;,

Bi(s_i) = {sj|s; € Si,Uf(sj,s—i) > U (si,s_;)}. (18)

We consider a stochastic better-response with inertia dy-
namics by adding an exploration process as shown in Algo-
rithm 2, where e§ =¢ = cftf\lm (ce > 0) is the exploration
factor.

The stochastic better-response with inertia dynamics can
converge to the NE of G’ [28]. It can only apply to the case
where both the average utility 4! and joint strategies of
other UEs s_; are known to UE i. However, neither the
average utility nor joint strategies are known in our scenario
when we construct the better-response set. To address the
unknown CSI, we resort to Q-learning following [28]. The
action is the strategy s; of each UE 7, the reward function is
the utility function U!. The state refers to the time-varying
wireless channel state. Different from classic Q-learning, our
state is unavailable to UEs and the state space will be huge

M
— > aiypij+
iz

S s

j=1

M
E Am,jPm,j
Jj=1

=0

mGN\{ }

when we model the continuously changing wireless channel
state. So we introduce single-state Q-learning [37] where the
agent is able to select the action based entirely on its utility
update function ¢/ : S — R [28]

UiE) = U 3) + V' Tes Ui (") —UTHE), (19)
where v = (C, + t/(8)) " is the learning parameter,
C, > 0, p, € (0,3], 8 is an arbitrary joint strategy, #'(8)
is the number of times the strategy § has been chosen
until time ¢, and [is the indicator function. We replace U
with U! to construct the better-response set Bi(s_;). The
Q-learning better-response process with inertia algorithm is

summarized in Algorithm 2.

4.3 Algorithm Enhancement

The Q-learning better-response process with inertia algo-
rithm only addresses the unknown CSI challenge. We seek
to enhance the algorithm to address the unavailable joint
strategies challenge and further improve the learning per-
formance.

4.3.1 Exploiting Aggregated Information

Still, UEs are aware of the aggregated information I_; which
contains the information of s_;. We can update Ut (s, 1_;)
instead of Ui (siys—;) in (19) according to Claim 1, where
I, = (I-iq,1-i2, - ,I_;) is the vector of aggregated
information from each edge node.

Claim 1. If the updating based on Z]f(si,s,i) can achieve the
NE s*, the same holds for the updating based on U! (s;,1_;).

Proof. We prove Claim 1 by analyzing the correlation of
the aggregated information and strategies of other UEs in
two cases: time-invariant CSI and time-variant CSI. We start
from the time-invariant CSI. The aggregated information

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

. _ h‘L,J
18, Iii’j(s) T No+ Y am,jPm,jhm,;
meN\{i}

the same s_; results in the same I_; ;(s) because h; ; is
constant over time slots. The mapping relationship between
strategies s_; and the aggregated information I_; can be
divided into two types: one-to-one mapping and many-to-
one mapping. In the one-to-one mapping case, it is obvious
that the updating based on U] (s;, I_;) is equivalent to the
updating based on U/ (s;,s_;). In the many-to-one mapping
case, it is probable that different strategies of other UEs, e.g.,
s_; and s’_; have the same I_; and U!(s;,I_;). We argue
that this many-to-one mapping has no influence on conver-
gence to the NE as the strategy updating process towards
NE is based on UEs’ utility (which is directly determined
by I_;). The same utility will lead to the same updating
process. Therefore, the updating based on U} (s;,I_;) can
also converge to the NE in time-invariant CSI cases if the
updating based on U/ (s;,s_;) converges.

Then, we extend to the time-variant CSI case. There
are three types of mapping relationship between s_; and
I_; in this case: one-to-one mapping, many-to-one map-
ping, and one-to-many mapping. The first two have been
analyzed in the time-invariant cases and we focus on
the one-to-many mapping where the same s_; may re-
sult in different I_; and U/ (s;,1_;) due to CSI random-
ness across time slots. Eagll UE i may respond differ-

. Keep s; unchanged,

ently based on different U/ (s;,I_;) for the same s_,.
Note that different response for the same s_; can occur
due to CSI randomness even when each UE i updates
based on U!(s;,s_;). However, the randomness of different
U} (si,s—;) will be averaged to the mean of Z/lf (si,8-4)
over time and the one-to-many mapping will vanish,
i.Ne., tli)r&l/{f(s,’i,s,ij — Z/lf(si,s:i) = tliglOZ/{f(s’i,I,i) —
Ul(si, 1) = tli%OUf(s;,I’_i)—Z/{f(si, I'_;). Therefore, if the
updating based on U (si,s_y;) leads to the NE, the same
holds for updating based on U/ (s;,I_;). O

The better set of each time slot ¢ can be modified as,

Bi(s—s) = {si|si € Si, UL (s}, 1-3) > Ui (s:,1-4)}. (20)

The detail is illustrated in the primary learning of Algorithm
3 (Lines 4-10). The primary learning converges to the NE of
the game G as shown in proof of Theorem 1. Next, we will
design the secondary learning to assist the primary learning.

4.3.2 No-Regret Dynamics

In a repeated game, a player has regret for a strategy if
there exists another strategy whose payoff is greater [36].
The average regret of the strategy {8!}7_; with respect to
strategy {st}7_, is defined as

Z

Regz {Sl}t 1 u;(sf7s7:z)) (21)

The main idea of no-regret dynamics is that each player
should adapt his strategy such that his regret grows sublin-
early as a function of the horizon T, thereby yielding zero
average regret asymptotically. No-regret dynamics guaran-
tees that the joint strategy will converge to points of no-
regret. These points can be referred to as coarse correlated

7

equilibrium in potential games [29]. Note that the NE is
coarse correlated equilibrium. Hence, no-regret algorithms
can effectively improve the convergence rate and bound the
learning loss of primary learning.

In this section, we adopt the idea of regret matching with
fading memory [36] into the better-response with inertia
dynamics. Thus, each UE can choose a strategy from the
better-response set based on the discounted average regret
probability of strategies. First, each UE needs to compute
the regret of each unplayed strategy corresponding to the
strategies of other UEs. With fading memory, each UE
exponentially discounts the influence of past regret, i.e.,

i), (22)

for all §; € S;, where @ € (0,1]. (1 —) is the discount
factor and Reg?(8;) = 0. The aggregated information I_;
is equivalent to s_; as shown in Claim 1. Then, each UE
computes the discounted average regret probability as

[Regi(8:)]"
> [Regi(si]*

s, €S;

Reg!™ (8:) = (1—a)Reg} (8:) + (U (8:, 1) U} (s, 1

Pri(Regi (§1)) = (23)

Recall that the stochastic better-response with inertia algo-
rithm chooses a strategy randomly from the better-response
set (Line 6 of Algorithm 2). Here, the secondary learning
assists the primary learning by choosing a strategy from
better-response set B!~ '(s_;) according to regret based
probability Pr;(Reg!™ 1(Bt '(s_;))) (Line 15 in Algorithm
3). We describe the algorithm in Algorithm 3. To make the
algorithm structure more clear, we provide an algorithm
framework illustration in Fig. 1.

4.4 Algorithm Performance Analysis

Theorem 2 shows the convergence guarantee and the upper-
bounded learning regret of Algorithm 3.

Theorem 2. The strategy profiles {s}, - ,sI'} generated by
Algorithm 3 can converge to the NE with no regret.

Proof. Convergence. Algorithm 3 is a variant of Q-learning
better-response process with inertia algorithm [28]. We first
review the convergence proof of Q-learning better-response
process with inertia in Step 1 and then prove the the
convergence of Algorithm 3 in Step 2. Suppose there are two
strategy profiles {s},---,sI'} and {8},---,387} generated
by Algorithm 3 and Q-learning better-response process with
inertia, respectively.

Step 1. The convergence of the Q-learning better-
response process with inertia follows from Lemma 5.5 in
[28]. We give the proof sketch as follows. Consider a Markov
chain generated on state space O by the better-response
process with inertia [28]. Let p;(s;|o) be the better-response
distribution used by UE ¢ with p;(s;lo) > 0 only if s; is
a better reply to o for i. Let L C N be a set of UEs having
inertia and keeping their strategies unchanged at the current
time slot. The Markov process transition function for a finite
memory better-response process with inertia is

Poor = [T (0 =m)pi(silo)+ Y (T m)(J [(1 = m))US,,

ieN LCN iel i¢L
(24)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

Algorithm 3 No-Regret Better-Response Based Edge Node
Grouping
Input: M, N, p, a;, Vi € N.

1: Initialization: s? is selected with probability ﬁ and UEs

initialize 20 (s°) = 0, BY(s_;) = @ and Reg? = 0.

2: fort=1,--- ,T do

3 fori=1,--- N do

4: Primary learning.

5: e With probability ¢!, st is chosen with probability

FAL
6: e With probability 1 — €,
7: o with probability 7;, st < s!™*,
8: o with probability 1 — 7;, choose a strategy from

l’gf_l(s_i) according to Pr;(Reg! ™ (BI7 (s_;))). If
Bi7l(s_;) =@, st < si7h

9: Observe F/(s') in the “Result Returning” duration.

10: Update U/ (s') according to (19).

11: Secondary learning.

12: Calculate the aggregated information I*, ..

13: Calculate the utility U} (8%,1";) of each strategy 8!
according to (6).

14: Update the regret Reg!(8!) of each strategy accord-
ing to (22).

15: Calculate the regret based probability.

16: end for

17: end for

where

uE, _ {Hiecﬂ{s; = si} [Tigc pisilo) ~ Condition 1
o0 0 otherwise.

(25)
where Condition 1 is that if o is a successor to o’ and s; (resp.
s}) is the iy, rightmost entry of o (resp. o).

The stochastic better-response process with inertia is
a perturbed process of the better-response process with
inertia. At each time slot, each UE uses the better-response
process with inertia rule with probability 1 — e’ or uniformly
samples from S; with probability €. The transition matrix
of stochastic better-response process with inertia at time slot
tis P . For et = ¢ fixed, the transition probability matrix is

Py = (- gMBy + 30 - gy,

L'CN,LAD
(26)
where
e icc 5718} = si} Iigc pi(silo) Condition 1
o0 0 otherwise.
(27)

If €t = € for all ¢ then we have a stationary, irreducible, and
aperiodic Markov chain on a finite state space, which is both
weakly and strongly ergodic. The stochastic better-response
process with inertia with varying €’ converges to the NE
following Lemma 5.6 in [28]. The proof is divided into
three steps, first showing that the process is weakly ergodic,
second, that it is strongly ergodic, and third, that the distri-
bution of historical strategies converges to a unique steady-
state distribution /ft with lim ;ft = p*. Finally, the

t—o00,et—0

Feedback of amount of the received CPU cycles

8; Joint strategy N Environment

8= (s1,"+7,8i, -, 55)

Fig. 1: Framework of Algorithm 3.

convergence of the Q-learning better-response process with
inertia follows from Lemma 5.5 in [28].

Step 2. Algorithm 3 is a variant of Q-learning better-
response process with inertia, which has two main mod-
ifications to fit our scenario. First, we enhance better-
response distribution by no-regret dynamics. Second, we
replace U} (s;,s_;) with U!(s;,I_;) in the Q-learning updat-
ing process. We prove that Algorithm 3 has the same con-
vergence performance with the Q-learning better-response
process with inertia. We begin with the first modification.
The Q-learning better-response process with inertia algo-
rithm chooses a strategy from a better-response set ran-
domly while Algorithm 3 chooses a strategy from a better-
response set according to regret based probability distri-
bution Pr;(Reg! ™' (B!™*(s_;))). This modification leads to
a different better-response distribution p;(s;|o) in (??) but
has no influence on the ergodicity of the Markov chain. We
can analyze the regret-based variant of the stochastic better-
response process with inertia in an identical way to the
earlier treatment of the stochastic better-response process
with inertia. This gives the perturbed transition probability
for the regret-based variant of the stochastic better-response
process with inertia, which looks identical to (26) but has
different values P,, and p;(s;|o). So the regret-based vari-
ant of the stochastic better-response process with inertia
converges to the NE. And the convergence of the Q-learning
variant also follows from Lemma 5.5 in [28]. Therefore,
the first modification has no influence on the convergence
performance. Following Claim 1, the second modification
has no influence on the convergence performance, either.
Therefore, the sequence of profile s’ is a non-stationary
ergodic Markov process and converges to the NE.

No Regret. In Algorithm 3, the regret matching method
is performed on the better-response set, where the strategies
are better in terms of maximizing the utility or minimizing
the regret. We can infer that the average regret of strategies
generated by Algorithm 3 is less than the regret matching
method. From the Blackwells Approachability Theorem in
[38], the average regret of regret matching method is of the

1 i Beal (D)
order of v e Tlgr;o i
method is no-regret. Therefore, Algorithm 3 is no-regret. [

= 0. The regret matching

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

5 DISCUSSION
5.1 Delayed Feedback

In this section, we consider the scenario where computation
capacities of edge nodes are fixed. The sum of the received
CPU cycles cannot exceed the maximum capacity F}j max,

Zaw ol

Suppose that UE i obtains F ;(s") CPU cycles in the time
slot t from edge node j. The computation time is

HTtranth -(St>
com —] 7
Fiy(s")

which can be influenced by both the joint strategies of other
UEs and the computation resource in edge nodes. When
Tﬁ?m < T the result and feedback are returned in the
current slot. Here, we consider the case of Tf?m > pdur,
The results and feedback of slot ¢ are returned to UE ¢ in
slot ¢t + (?gﬁn | Note that 77°5™ is unknown to UE 4, and the
delays may change the order of feedback, with the feedback
of a latter strategy returning before the feedback of an earlier
one. UEs need to learn with absent and disordered feedback.

We propose Algorithm 4 by integrating feedback queues
[39] in between the primary learning phase and the sec-
ondary learning phase to enable Algorithm 4 to adapt the
delayed feedback. In the result returning phase, each UE
collects feedback information of prior time slots and stores it
in separate queues for each strategy (Line 5 in Algorithm 4).
If the feedback queue for the current strategy is not empty,
U!(s') is updated (Line 10 in Algorithm 4) and secondary
learning is performed. When no feedback is available (Line
13 in Algorithm 4), the algorithm keeps the same strategy
with the last time slot. Thus, Algorithm 3 runs in a simulated
non-delayed environment. We describe the algorithm in
Algorithm 4 and illustrate the algorithm framework in Fig.
2. Theorem 3 shows the theoretical convergence guarantee
and upper-bounded learning regret of Algorithm 4.

7 Fj max, Vj € M. (28)

; (29)

Theorem 3. Suppose T5™ < Tmax(Vi, j,), where Tiax < T,
the strateqy profiles {8k};_, generated by Algorithm 4 converge
to the NE and have no regret.

Proof. Convergence. Suppose there are two strategy profiles
{st,---,sT'} and {8},--- 87} generated by Algorithm 3
and Algorithm 4 respectively. The key idea is to prove
{8}, 87} is an extension of {s!,---,s?} with arbitrary
element s! repeats itself several times. Thus, {8}, -- &7
has the same convergence performance with {s},--- sT
From Theorem 2, {s!, s} converges to the NE. We
consider an extreme 51tuat10n where Tf?m = Tmax- When
the feedback of the played strategy is available in the queue,
Algorithm 4 performs the same steps as Algorithm 3. When
the feedback is not available, the played strategy repeats
itself at most 7.« times until a feedback returns. Thus, the
strategy profiles {8},--- ,8]'} can be seen as an extension
of {sl,---,sI'} where each strategy repeats itself several
(at most Tinax) times. With 7. < 7T, {8}, ,87'} also
converges to the NE.

No Regret. To relate the regret of Algorithm 3 and

Algorithm 4, we first model the upper-bound of missing

9
Algorithm 4 Feedback Queues Based Edge Node Grouping

Input: M, N, p, a; Vi € N.
1: Initialization. s? is selected with probability ﬁ UEs
initialize U°(s®) = 0, B%(s_;) = @, Reg? = 0 and create
an empty FIFO buffer Q[s;] for each s; € ;.

2: for timeslott=1,2,--- ,7 do
3 fort=1,---,N do
4: Primary learning in Algorithm 3.
5: Queueing.
6: for each delayed feedback do
7 Add the feedback to the buffer Q(s;).
8 end for
9: Use J to index the current strategy J « st .
10: if Q[J] is not empty then
11: Update U} (J) using Q[J] according to (19).
12: Secondary learning in Algorithm 3.
13: else
14: st si71,
15: Go to Lme 9.
16: end if
17: end for
18: end for

Delayed feedback
Feedback queues
I uer |—2
f—] PR Joint strategy .
—>[T » UEi . »{ Environment
— §= (o1, 00,5007 5%)
[TIITT UEN =

Fig. 2: Framework of Algorithm 4.

feedback times. Then we relate the number of times that
the two algorithms run, based on which we relate the regret
of the two algorithms. We make some definitions. Let Y
denote the number of times s; is chosen by the end of time
slot ¢. Let Zt denote the number of feedback for s; that
are received by the end of time slot t. Gf, = Y — Z!
is the number of missing feedback for s; at time slot .
Gi* = max G GL.. Us, is the expected utility of s;, U] is
the maximal utility of all strategies, &,

the regret of strategy s;. The expected regret of UE ¢ is

T

= U — Us, is
E[Reg]] = Z(U* Ugt) = ZES E[Y,

Y " be the number of times that Algorithm 3 has chosen s;
Whlle being queried t’ times. ¢’ is the number of time slots
the Algorithm 3 performs in ¢ slots of the delayed problem.
Assume that Algorithm 4 runs multiple slots so that Algo-
rithm 3 is queried for ¢ times. Then, since t' < t, the number
of times s; is chosen by Algorithm 3, namely Y/t/ can only
increase, Y < Y, 't. Combined with the Lemma 5 of [39],
0<Y] - Y s Gt* we have E[Y!] < E[Y,]+ E[G!*]. The
average regret over all T" time slots is '

S EENT] < D6 BN+ D& EIGT)
Si Si Si

] Furthermore, let

(30)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021 10
M K p h,
a; j klFi,5,k"%,5,k
4,k 1082 (34)
g kz:: TRt % rr5,Pm k5
meN\{i}

From Lemma 4 of [39], the delayed feedback sequence of
each strategy has the same distribution as the sequence
of non-delayed feedback sequence. The Algorithm 3 has
worked on the first Yslf of the feedback for each s;, and
has therefore operated for ¢ times in a simulated environ-
ment with the same feedback distributions, but without
delay. Hence, the first summation in the right-hand side
of (30) is E[Reg!] the expected regret of the Algorithm
3. As TP < dex, E[GY*] < Tmax. The average regret

of Algorithm 4 RegZ is upper-bounded by]E[Regz] <

E[Reg!] + O(Tmax)- Based on Theorem 2, hm ElReg,] _
T—o0
lim ([R;g’ L+ (Tr““")) = 0. Therefore, Algorithm 4 is also
T—o00

no-regret. O

5.2 Edge Nodes with Multiple Frequency Bands

In previous sections, we assume that UEs offloading the task
to the same edge node share one frequency band. We will
extend to the scenario where each edge node has multiple
frequency bands denoted as K = {1,--- , K}. The strategy
of UE 4 is modified as s} = {a] ; , p} ; }- The constraint on
UE-edge node association is modified as,

M K

SN ain=LVieN,1<t<T,

j=1k=1

€]

K
daljk=1LVieN,Vje M1<t<T, (32)

k=1

which means each UE occupies one band when connecting
to each edge node. The constraint on transmission power
allocation is modified as,

M K

Zzpﬁ,j,k < Pimax, Vi e N1 <t < T.

j=1k=1

(33)

We focus on exploring the wireless interference that occurs
when multiple UEs connect to the same edge node on the
same band. We compute the total transmission rate of UE ¢
as (34), where W ; is the channel bandwidth, h} j) is the
channel gain between UE i and edge node j on frequency
band k. Uplink inter-UE interference occurs when multiple
UEs simultaneously transmit to the same edge node over the
same band. The transmission energy consumption of UE ¢

is
trans
=T ZZ“ Jkpuk’

j=1k=1

El(s (35)

Then, we will analyze the aggregated information pattern in

this extended scenario. For frequency band % of edge node

j with af ;, = 1, the aggregated information of other UE

strategies /_; ;1 in edge node j on frequency band £ at
time slot ¢ can be calculated as

Rf J.k

2 Wik —1

I t—i,j,k = % =
i,5,kP4,5,k

(36)

where Rf’ ;i denotes the data transmission rate between
UE 7 and edge node j on frequency band £, and can be
calculated from the feedback following (36). For frequency
band k of edge node j with a§7 ik = 0, UE i transmits pilot
signals with low power and the aggregated information can
also be obtained from (36). Consequently, the aggregated
information of other UE strategies can be calculated. Sim-
ilarly, we can apply computation models (Sections 3.3 and
5.1) and utility function (Section 3.4) to compute the utility.
We can also model the edge node grouping problem as a
repeated game. For such repeated game under the multiple
frequency bands model, we show that it exhibits the same
structural property as the single frequency band model.
Both Theorem 1 and Claim 1 hold in this multiple frequency
bands scenario.

Proposition 1. The stage game G' = {N, {s; }yienrs {Ui }ien}
is an exact potential game with the potential function in (37),
where H = {h] ; .} is the matrix of the channel gain. fy is the
joint distribution of H.

The proof is similar to Theorem 1. In this scenario, we
can also update U/ (s;,I_;) instead of U} (s;,s_;) according
to Claim 2, where I_; = {I_; ; » } is the matrix of aggregated
information.

Claim 2. In the multiple frequency bands scenario, if the updat-
ing based on U} (s;,s_;) can achieve the NE s*, the same holds
for the updating based on U} (s;,1_;).

The proof is similar to Claim 1. Based on Proposition 1
and Claim 2, Algorithms 3 and 4 can extend to the scenario
where each edge node has multiple frequency bands.

5.3 Limitations of Our Algorithms

Reinforcement learning has been applied widely in various
scenarios [40—42]. In this work, we design multi-agent Q-
learning algorithms where UEs select a joint action and each
receives an individual reward. In the context of mobile com-
munication networks, each UE only competes with several
neighboring UEs and the size of the candidate edge node
set is also limited because only edge nodes with relatively
high received signal strength would be chosen to ensure
good offloading performance. The proposed algorithms can
scale well with network size due to limited action space.
However, they may face space explosion problems in other
large-scale games. The size of the learning problem grows
exponentially with the number of agents. This causes slow
convergence and heavy memory overhead, thereby reduc-
ing the applicability of our algorithms in other large-scale
games.

6 EVALUATION

We evaluate Algorithm 3 (labeled as Alg.3) and Algorithm 4
(labeled as Alg.4) by answering 7 research questions (RQs)
with 3 metrics, namely, average utility, average received

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

11

N M K

M K N
P(siys—i) = T (Al /Z > Wi log, (NO +> ai,j,kpi,j,khij,k> Fradhi g - dhin g = Az D Zaivjvkpw”f)
H j i=1

Jj=1k=1

TABLE 2: Simulation Parameters.

Parameters Value

Task transmission time 7°t7ans 300 ms
Channel bandwidth W 0.1 MHz
Transmit power budget P; max | 0.1IW
Computation to data ratio x 1900 cycle/bit
Background noise power Ny 107183 w
Weight factor Ay 2x10°6

Weight factor A2 600

Inertia Parameter 7; 1/N
Parameter C,, 0.01
Parameter c. 1
Parameter p, 0.9
Parameter « 0.91

CPU cycle numbers, and average energy consumption. And
we share our simulation codes ! for researchers who are
interested in our work.

6.1 Simulation Setup

Simulation Parameters. We conduct extensive simulations
with various system settings on a MATLAB2016b-based
simulator using a PC with Intel Core i5-7200U CPU @
2.5 GHz processor. We assume that the edge network is
deployed in a commercial complex served by a set of edge
nodes whose locations are generated by a homogeneous
Poisson point process. The UE locations are also generated
by the homogeneous Poisson point process. The default
channel fast fading between each pair of edge node and
UE follows Rayleigh distribution. All simulation results
are obtained by averaging over 2 x 10 time slots. In the
delayed-feedback case, the feedback delay (measured by
the number of time slots) follows exponential distribution
exp(u) with 4 = 3. The feedback delay is min(exp(u), Tmax)-
The main parameters follow [27] as shown in TABLE 2.

Baseline Approaches. We compare our algorithms with
three baselines as follows.

1) Oracle benchmark (labeled as Full CSI). Each UE knows
the full CSI as well as strategies of other UEs and derives
its strategy by following Algorithm 1. In each time slot,
the algorithm randomly chooses a UE to perform the best-
response to other UEs iteratively until converges to the
NE. The Oracle benchmark faces no challenge from system
uncertainty that we focus on, so it provides a performance
upper bound for our algorithms.

2) Q-Learning (labeled as QL). Each UE knows strategies
of other UEs with unknown CSI and derives its strategy by
following the idea of Algorithm 2 in [27] where each UE
learns the offloading strategy by updating the Q-function.
Q-Learning is the state-of-art online learning method that is
highly related to ours. The superiority of our algorithms can
be highlighted by comparing with the Q-Learning method

1. http:/ /sguangwang.com/resources.php

i=1 j=1 k=1

(37)

e S S

25

—-+ Full CSI

| —o—Alg3

5J: QL Algd
0

Average utility
Average utility
L

Alg4 RAN
RAN

0.5 1 1.5 2 0 0.5 1 1.5 2
Time slot %10*

Time slot < 10%

(a) Rician Channel. (b) Rayleigh Channel.

Fig. 3: Performance under different channel models.

[27] in face of system uncertainty from both wireless envi-
ronment and other users.

3) Random assignment (labeled as RAN). Each UE ran-
domly chooses the edge node grouping strategy in each
time slot. The Random assignment method is the simplest
and most time-efficient way to make edge node grouping
decisions and provides a performance lower bound for our
algorithm.

6.2 RQ1: How does channel condition affect our algo-
rithms?

Motivation. Since channel state dynamics can influence
learning efficiency. We aim to evaluate the scalability of our
algorithms under different channel conditions.

Approach. Rician and Rayleigh channel models are two
widely used channel models in wireless communications.
The Rician channel assumes that the transmission paths
from the transmitter to the receiver are comprised of the
dominant line-of-sight path and other scattering paths,
whereas the Rayleigh channel consists of scattering chan-
nels from the transmitter to the receiver. We test how our
algorithms adapt to the two channel models. We plot utility
variation with time under Rician distribution and Rayleigh
distribution in Fig. 3(a) and Fig. 3(b) respectively.

Result. Alg.3 and Alg.4 achieve average 88.66% and 78.27%
utility of Full CSI under Rice channel in Fig. 3(a). Alg.3 and
Alg.4 achieve average 87.63% and 77.40% utility of Full CSI
under Rayleigh channel in Fig. 3(b). The utility variation
trend of our algorithms is nearly the same under different
channel models. And both of them can converge to the
stable state.

Answer. Our algorithms are robust to the channel condition
dynamics.

6.3 RQ2: How does network scale affect our algo-
rithms?

Motivation. Our algorithms are distributed algorithms that
can scale well with the edge node numbers. We evaluate
how the edge node number affects our algorithms.

Approach. To verify the scalability, we increase the average
edge node number from 5 to 25 and increase the average

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

400 7= "Ryrr st ‘ ‘]

—o—Alg.3
—»— QL +

300

Sum utlity
[N
f=d
3

100 ¢

5 10 15 20 25
Edge node number

Fig. 4: Performance under different network scales.

UE number from 3 to 15 proportionally. We choose 5 nearest
edge nodes as a candidate set for each UE. We plot the sum
utility of all the UEs with edge node numbers in Fig. 4.
Result. Alg.3 and Alg.4 achieve average 86.81% (ranging
from 86.55% to 87.00%) and 77.12% (ranging from 76.80%
to 77.61%) utility of Full CSI within the investigated range in
Fig. 4. Although the edge node number scales up, each UE
can only choose from the five edge nodes in the candidate
set and will be influenced by several UEs nearby. So the al-
gorithm performance will not be influenced by the network
size. From Fig. 4, our algorithms can scale linearly with edge
node number. Alg.3 improves slightly (5.30%) sum utility of
QL for the following reasons. First, Alg.3 performs with less
information (without the joint strategy of all UEs), which
deteriorates the average utility. However, Alg.3 introduces
no-regret dynamics into better-response dynamics, which
helps improve the utility. Alg.4 has a 12% performance loss
compared with Alg.3 due to the delayed feedback.

Answer. Our algorithms scale well with the network size.

6.4 RQ3: How do weight factors affect our algorithms?

Motivation. Weight factors reflect the relative importance
(preference) between the received CPU cycles and energy
consumption. We try to explore how weight factors influ-
ence our algorithms.

Approach. We set \; as the default value 2 x 107% and
change Ag such that Ao/A; = 107, where ¢ € [7.40,11.10].
A2 shows the dominance variation of the two weight factors,
which is achieved by experiment.

Result. The average utility in Fig. 5(a) keeps unchanged
when Ay/A; < 10%% and drops sharply when Ay/A\; <
109:5%. The received CPU cycles in Fig. 5(b) do not change
with the variation of Ay/\; because)\ is fixed. The aver-
age energy consumption fluctuates slightly when Az2/\; <
10%-%5 and drops sharply when A2 /A\; > 10%% in Fig. 5(c).
The reason is that energy consumption dominates the utility
when)\2/)\1 > 10965,

Answer. The weight factors reflect the relative importance
(preference) between the received CPU cycles and energy
consumption in the utility function. The received CPU cy-
cles dominate the utility when Ay/A\; < 10965, otherwise,
the energy consumption dominates.

12

6.5 RQ4: Do our algorithms converge with no regret?

Motivation. Convergence and regret are critical factors to
illustrate whether the learning-based algorithm can find the
best solutions. Convergence represents the stability of the
algorithm. Regret determines the expected performance loss
over time. We give theoretical results in Theorem 2 and
Theorem 3 and verify them in simulation.

Approach. We run our algorithms over 5000 time slots
under a network scale with 25 edge nodes and 15 UEs. Each
UE chooses 5 nearest edge nodes as a candidate set and
competes with several UEs nearby. We record the average
utility of Alg.3, Alg.4, and Q-learning in Fig. 6 (a). We record
the average regret of both Alg.3 and Alg.4 in Fig. 6 (b).
Result. From Fig. 6(a), we observe that the average utility
of all three algorithms can converge after about 2000 time
slots (iterations). The convergence rate is determined by the
action space size in our scenarios. Agl.3 and Alg. 4 have
the similar convergence rate with the Q-learning algorithm
because they have the same action space size. Besides, the
enhancements in our algorithms have no influence on the
convergence. This verifies the theoretical results as proved
by Theorem 2 and Theorem 3. Moreover, Alg.3 and Alg.4
can guarantee zero average regret as shown in Fig. 6(b).
Answer. Alg.3 and Alg.4 converge to the NE with no regret
as proved in Theorem 2 and Theorem 3. No UE is willing
to change its strategy ultimately at the equilibrium and the
learning loss is sublinear.

6.6 RQ5: Is there an optimal edge node group size?

Motivation. Since edge node group size affects the cooper-
ative offloading performance, we try to explore the optimal
size.

Approach. We set the number of edge nodes as eight and
change the edge node group size from one to seven.
Result. The optimal edge node group size is four in our
parameter settings. Alg.3 and Alg.4 can achieve an average
of 96.99% and 92.50% utility of Full CSI in our settings. In
Fig.7(a), all the five algorithms have the highest utility when
the edge node group size is four. The utility first increases
and then decreases with group size. The reason may be that
the increase of group size means more data transmission
links for one UE, which improves the utility. However, it
also leads to more resource contention among UEs, which
degrades the utility. Hence, there exists an optimal edge
node group size that maximizes the average utility.
Answer. Optimizing edge node group size can further im-
prove offloading performance.

6.7 RQ6: How does feedback delay affect Alg.4?

Motivation. Intuitively, feedback delays affect the learning
performance of Alg.4. We try to verify this in simulation.
Approach. We change the expectation of feedback delays
i from one to six. The feedback delays are calculated as
min(exp(p), Tmax) where Tmax is set as ten.

Result. Fig. 7(b) shows that the averaged utility drops with
feedback delays because the increased delay leads to more
absent feedback and worsens learning performance.
Answer. The feedback delay degrades the learning perfor-
mance of Alg.4.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021 13
7
30 1.4 210 =01 +
” g
it el S a e S = — —+ — — — — — 1 ~
25 4-—4%»%‘**\ ;%)1‘3 —+ — e —— A —— - —— — — g
> =B 20.09 |
5 o g |
515 S 2
I —0— 0 —0— 6 —06— 4 = L
! o o Gy, \ S e e e oo o 2] go o
N 51 081
IR e AN 8 [—— FuncsI z += Full CSI
> . = = —e—Alg.3
Z 5|—e—Alg3 \ 0 0.9 Alg3 2 — oL
- QL N 20.07 N
0 Alg4 208 Alg4 g | QE\?
s —o- RAN < oI RAN. b o o e —0— o o9 8 - ‘
5 5 m " : S 5 0 I z 8 9 10 11
A /A AN, AN,

(a) Utility.

(b) CPU cycles.

(c) Energy consumption.

Fig. 5: Performance under different weight factors.

o 10 ——Alg3
. 0.15¢ Alg4
= 0— — e
2 3 01
E & i
= B _
$15 5 005 1986 1.988
b} i 4
o 5] 0 0TS
2 10 2 ‘
5 -0.05 ‘
0.1
1000 2000 3000 4000 5000 0 0s 1 15 2
Time slot Time slot x10*
(a) Convergence. (b) Regret.

Fig. 6: Convergence and regret.

—+ Full CSI
—o—Alg3
QL
Algd
—& RAN

y
5

/
Average utility
S
&

Average utilit;

1 2 3 4 5 6
Feedback delay

(b) Feedback delay.

Group size

(a) Optimal group size.

Fig. 7: Impact of system parameters.

6.8 RQ7: How long do our algorithms need to make the
edge node grouping decision in each time slot?

Motivation. We seek to evaluate the efficiency of Alg.3 and
Alg.4 in terms of time consumption.

Approach. We set the duration of one slot as 500ms. Then,
we record the runtime of all algorithms in each time slot on
a typical PC and average over 2 x 10* slots.

Result. As shown in TABLE 3, Alg.3 and Alg.4 take 17.80ms

TABLE 3: Algorithm Runtime

Algorithm Runtime
Full CSI 180.87 ms
Alg. 3 17.80 ms
Q-Learning 16.43 ms
Alg4 9.82 ms
Random Assignment 0.15ms
Offloading decision cycle | 500ms

and 9.82ms respectively in each time slot. Full CSI incurs
the highest overhead, taking 180.87ms on average because
Full CSI needs many iterations to reach NE in each time slot.
By contrast, other algorithms need much less time, 17.80ms
for Alg.3, and 16.43ms for QL because the two algorithms
have only one iteration in each time slot and reach NE
over multiple time slots. Alg.4 consumes 9.82ms because
of feedback absence in some time slots.

Answer. Alg.3 and Alg.4 cause light overhead in practice
with performance guarantees.

7 CONCLUSIONS

In this paper, we investigate decentralized mechanisms for
edge node grouping. We first formulate this problem as a
repeated game and prove that it is an exact potential game
with a unique NE. Then, we propose a novel decentralized
learning algorithm based on better-response dynamics and
no-regret dynamics. Our mechanisms can converge to NE
with no-regret. To extend to the scenarios (i.e., feedback is
delayed and edge nodes have multiple frequency bands),
we first enhance the algorithm by introducing feedback
queues and then prove that our algorithms can be extended
to the multiple frequency bands wireless model. In future
work, we will carry out performance analysis to characterize
how the number of edge nodes in a group affects the utility
function, given the network conditions such as the density
of users, the density of edge nodes, CSI dynamics. And we
will optimize the edge node group size dynamically in the
highly fluctuated network environment to further improve
the edge node grouping performance.

REFERENCES

[1] E Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An
efficient computation offloading management scheme
in the densely deployed small cell networks with
mobile edge computing,” IEEE/ACM Transactions on
Networking, vol. 26, no. 6, pp. 2651-2664, 2018.

X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. S.
Shen, “Cost-efficient resource provisioning for dynamic
requests in cloud assisted mobile edge computing,”
IEEE Transactions on Cloud Computing, pp. 1-1, 2019.

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and
V. Young, “Mobile edge computing a key technology

(2]

(3]

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

towards 5G,” European Telecommunications Standards In-
stitute white paper, vol. 11, no. 11, 2015.

[4] X.Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative
service caching and workload scheduling in mobile
edge computing,” in proc. of IEEE Conference on Com-
puter Communications, 2020, pp. 2076-2085.

[5] X. Gong, “Delay-optimal distributed edge computing
in wireless edge networks,” in proc. of IEEE Conference
on Computer Communications, 2020, pp. 2629-2638.

[6] H. Guo,]. Liu, and J. Zhang, “Computation offloading
for multi-access mobile edge computing in ultra-dense
networks,” IEEE Communications Magazine, vol. 56,
no. 8, pp. 14-19, 2018.

[7] C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge com-
puting framework for cooperative video processing in
multimedia IoT systems,” IEEE Transactions on Multi-
media, vol. 20, no. 5, pp. 1126-1139, 2018.

[8] J. Kim, T. Kim, M. Hashemi, C. G. Brinton, and D. J.
Love, “Joint optimization of signal design and resource
allocation in wireless D2D edge computing,” in proc. of
IEEE Conference on Computer Communications, 2020, pp.
2086—2095.

[9] Y.Zhu, Y. Hu, and A. Schmeink, “Delay minimization
offloading for interdependent tasks in energy-aware
cooperative MEC networks,” in proc. of IEEE Wireless
Communications and Networking Conference, 2019, pp. 1-
6.

[10] Q. Lin, F. Wang, and J. Xu, “Optimal task offloading
scheduling for energy efficient D2D cooperative com-
puting,” IEEE Communications Letters, vol. 23, no. 10,
pp. 1816-1820, 2019.

[11] Y. Liu, X. Li, F. R. Yu, H. Ji, H. Zhang, and V. C. M.
Leung, “Grouping and cooperating among access
points in user-centric ultra-dense networks with non-
orthogonal multiple access,” IEEE Journal on Selected
Areas in Communications, vol. 35, no. 10, pp. 2295-2311,
2017.

[12] M. Chen and Y. Hao, “Task offloading for mobile edge
computing in software defined ultra-dense network,”
IEEE Journal on Selected Areas in Communications, vol. 36,
no. 3, pp. 587-597, 2018.

[13] W. Chen, Z. Su, Q. Xu, T. H. Luan, and R. Li, “VFC-
based cooperative UAV computation task offloading
for post-disaster rescue,” in proc. of IEEE Conference on
Computer Communications, 2020, pp. 228-236.

[14] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou,
“Cooperative task offloading in three-tier mobile com-
puting networks: An ADMM framework,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 3, pp. 2763—
2776, 2019.

[15] J. Feng, E. Richard Yu, Q. Pei, X. Chu, J. Du, and
L. Zhu, “Cooperative computation offloading and re-
source allocation for blockchain-enabled mobile-edge
computing: A deep reinforcement learning approach,”
IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6214—
6228, 2020.

[16] M. Li, J. Gao, N. Zhang, L. Zhao, and X. Shen, “Col-
laborative computing in vehicular networks: A deep
reinforcement learning approach,” in proc. of IEEE In-
ternational Conference on Communications, 2020, pp. 1-6.

[17] C. Funai, C. Tapparello, and W. Heinzelman, “Com-

14

putational offloading for energy constrained devices in
multi-hop cooperative networks,” IEEE Transactions on
Mobile Computing, vol. 19, no. 1, pp. 60-73, 2020.

[18] Y. H. Kao, K. Wright, P. H. Huang, B. Krishnamachari,
and F. Bai, “"MABSTA: Collaborative computing over
heterogeneous devices in dynamic environments,” in
proc. of IEEE Conference on Computer Communications,
2020, pp. 169-178.

[19] X. He, H. Lu, H. Huang, Y. Mao, K. Wang, and S. Guo,
“QoE-based cooperative task offloading with deep re-
inforcement learning in mobile edge networks,” IEEE
Wireless Communications, vol. 27, no. 3, pp. 111-117,
2020.

[20] Y. Cui,]J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and

Y. Zhang, “Software defined cooperative offloading for

mobile cloudlets,” IEEE/ACM Transactions on Network-

ing, vol. 25, no. 3, pp. 1746-1760, 2017.

L. Chen, S. Zhou, and J. Xu, “Computation peer of-

floading for energy-constrained mobile edge comput-

ing in small-cell networks,” IEEE/ACM Transactions on

Networking, vol. 26, no. 4, pp. 1619-1632, 2018.

[22] J. He, D. Zhang, Y. Zhou, and Y. Zhang, “A truthful

online mechanism for collaborative computation of-

floading in mobile edge computing,” IEEE Transactions

on Industrial Informatics, vol. 16, no. 7, pp. 4832-4841,

2020.

S. Josilo and G. Dén, “Selfish decentralized computa-

tion offloading for mobile cloud computing in dense

wireless networks,” IEEE Transactions on Mobile Com-

puting, vol. 18, no. 1, pp. 207-220, 2019.

L. Yang, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, “A

distributed computation offloading strategy in small-

cell networks integrated with mobile edge computing,”

IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp.

2762-2773, 2018.

[25] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user

computation offloading for mobile-edge cloud com-

puting,” IEEE/ACM Transactions on Networking, vol. 24,

no. 5, pp. 2795-2808, 2016.

C. Gao, Y. Li, Y. Zhao, and S. Chen, “A two-level game

theory approach for joint relay selection and resource

allocation in network coding assisted D2D communica-

tions,” IEEE Transactions on Mobile Computing, vol. 16,

no. 10, pp. 26972711, 2017.

[27] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, “Learn-
ing for computation offloading in mobile edge com-
puting,” IEEE Transactions on Communications, vol. 66,
no. 12, pp. 6353-6367, 2018.

[28] A. C. Chapman, D. S. Leslie, A. Rogers, and N. R. Jen-
nings, “Convergent learning algorithms for unknown
reward games,” SIAM Journal on Control and Optimiza-
tion, vol. 51, no. 4, pp. 3154-3180, 2013.

[29] H. P. Young, Strategic learning and its limits.
Oxford, 2004.

[30] N. Lee, D. Morales-Jimenez, A. Lozano, and R. W.
Heath, “Spectral efficiency of dynamic coordinated
beamforming: A stochastic geometry approach,” IEEE
Transactions on Wireless Communications, vol. 14, no. 1,
pp. 230-241, 2015.

[31] R. Tanbourgi, S. Singh, J. G. Andrews, and F. K. Jondral,
“A tractable model for noncoherent joint-transmission

[21]

(23]

(24]

[26]

our

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

(32]

(33]

[34]

(35]

(36]

(371

(38]

(391

[40]

[41]

[42]

base station cooperation,” IEEE Transactions on Wireless
Communications, vol. 13, no. 9, pp. 4959-4973, 2014.

W. Bao and B. Liang, “Optimizing cluster size through
handoff analysis in user-centric cooperative wireless
networks,” IEEE Transactions on Wireless Communica-
tions, vol. 17, no. 2, pp. 766-778, 2018.

M. Rahman, H. Yanikomeroglu, and W. Wong, “Inter-
ference avoidance with dynamic inter-cell coordination
for downlink lte system,” in proc. of IEEE Wireless
Communications and Networking Conference, 2009, pp. 1-
6.

D. Monderer and L. S. Shapley, “Potential games,”
Games and economic behavior, vol. 14, no. 1, pp. 124-143,
1996.

Z. Zhou, P. Glynn, and N. Bambos, “Repeated games
for power control in wireless communications: Equilib-
rium and regret,” in proc. of IEEE Conference on Decision
and Control, 2016, pp. 3603-3610.

J. R. Marden, G. Arslan, and J. S. Shamma, “Re-
gret based dynamics: convergence in weakly acyclic
games,” in proc. of International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 2007, pp. 1-8.
K. Spiros and K. Daniel, “Reinforcement learning of
coordination in cooperative mas,” in proc. of National
Conference on Al, Alberta, 2002, pp. 326-331.

S. Hart and A. Mas-Colell, “A simple adaptive proce-
dure leading to correlated equilibrium,” Econometrica,
vol. 68, no. 5, pp. 1127-1150, 2000.

P. Joulani, A. Gyorgy, and C. Szepesvéri, “Online learn-
ing under delayed feedback,” in proc. of International
Conference on Machine Learning, 2013, pp. 1453-1461.

L. Jiang, H. Huang, and Z. Ding, “Path planning for
intelligent robots based on deep g-learning with ex-
perience replay and heuristic knowledge,” IEEE/CAA
Journal of Automatica Sinica, vol. 7, no. 4, pp. 1179-1189,
2020.

L. Xue, C. Sun, D. Wunsch, Y. Zhou, and F. Yu, “An
adaptive strategy via reinforcement learning for the
prisoners dilemma game,” IEEE/CAA Journal of Auto-
matica Sinica, vol. 5, no. 1, pp. 301-310, 2018.

Z. Cao, C. Lin, M. Zhou, and R. Huang, “Scheduling
semiconductor testing facility by using cuckoo search
algorithm with reinforcement learning and surrogate
modeling,” IEEE Transactions on Automation Science and
Engineering, vol. 16, no. 2, pp. 825-837, 2019.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China (2020YFB1805500), the National Science
Foundation of China (61922017, 61921003, 61902036).

15

Qing Li received the M.S. degree in The State
Key Laboratory of Integrated Services Networks
from Xidian University, Xi'an, China, in 2017.
She is currently a Ph.D. candidate at the State
Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and
Telecommunications. Her research interests in-
clude cloud computing and mobile edge comput-

ing.

Xiao Ma received her Ph.D. degree in Depart-
ment of Computer Science and Technology from
Tsinghua University, Beijing, China, in 2018. She
is currently a lecturer at the State Key Laboratory
of Networking and Switching Technology, BUPT.
From October 2016 to April 2017, she visited
the Department of Electrical and Computer En-
gineering, University of Waterloo, Canada. Her
research interests include mobile cloud comput-
ing and mobile edge computing.

Ao Zhou received the PH.D degrees in Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2015. She is currently an Asso-
ciate Professor with State Key Laboratory of Net-
working and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications. She
has published 20+ research papers. She played
a key role at many international conferences.
Her research interests include Cloud Computing
and Edge Computing.

Xiapu Luo is an Associate Professor with the
Department of Computing, The Hong Kong Poly-
technic University. He received the Ph.D. de-
gree in Computer Science from The Hong Kong
Polytechnic University, and was a Post-Doctoral
Research Fellow with the Georgia Institute of
Technology. His work appears top venues and
received seven best paper awards (e.g., INFO-
COM’18, ISPEC’17, ISSRE’16, etc.). His current
research focuses on mobile and loT security and
privacy, blockchain and smart contracts, network

security and privacy, software engineering, and Internet measurement.

Fangchun Yang received his Ph.D. in communi-
cations and electronic systems from the Beijing
University of Posts and Telecommunication in
1990. He is currently professor at the Beijing Uni-
versity of Posts and Telecommunication, China.
He has published 8 books and more than 100
papers. His current research interests include
network intelligence, service computing and ma-
chine games. He is a fellow of the IET.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL**, NO.**, 2021

Shangguang Wang is a Professor at the School
of Computer Science and Engineering, Beijing
University of Posts and Telecommunications,
China. He received his Ph.D. degree at Beijing
University of Posts and Telecommunications in
2011. He has published more than 150 papers.
His research interests include service comput-
ing, mobile edge computing, and satellite com-
puting. He is currently serving as Chair of IEEE
Technical Committee on Services Computing
(2022-2013), and Vice-Chair of IEEE Technical
Committee on Cloud Computing (2020-). He also served as General
Chairs or Program Chairs of 10+ IEEE conferences. He is a Fellow of
the IET, and Senior Member of the IEEE. For further information on Dr.
Wang, please visit: http://www.sguangwang.com

16

