

 Int. J. Web and Grid Services, Vol. 10, No. 1, 2014 1

 Copyright © 2014 Inderscience Enterprises Ltd.

Efficient QoS management for QoS-aware web
service composition

Shangguang Wang*
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
Haidian, Beijing, 100876, China
Email: sguang.wang@gmail.com
*Corresponding author

Xilu Zhu
The Research Institution of China Mobile,
China Mobile Limited,
Changsha, Hunan, 425200, China
Email: xilu.zhu@gmail.com

Fangchun Yang
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
Haidian, Beijing, 100876, China
Email: fcyang@bupt.edu.cn

Abstract: In this paper, we propose an efficient QoS management approach for
QoS-aware web service composition. In the approach, we classify web services
according to theirs similarity and then design a QoS tree to manage the QoS the
classified web services. Besides, by querying the managed QoS, we propose a
QoS-aware web service composition via a particle swarm optimisation
algorithm to perform fast web service composition. Experimental results based
on two kinds of dataset show our proposed approach outperforms other
schemes in terms of query cost, computation time and optimality.

Keywords: web service; QoS; QoS management; service composition; particle
swarm optimisation.

Reference to this paper should be made as follows: Wang, S., Zhu, X. and
Yang, F. (2014) ‘Efficient QoS management for QoS-aware web service
composition’, Int. J. Web and Grid Services, Vol. 10, No. 1, pp.1–23.

Biographical notes: Shangguang Wang is an Assistant Professor in Beijing
University of Posts and Telecommunications. He received his PhD degree in
Computer Science and Technology from Beijing University of Posts and
Telecommunications in 2011. He served as reviewer for IEEE Transactions on
Parallel and Distributed Systems, The Computer Journal, IET Software,
Journal of Network and Computer Applications, International Journal of Web
and Grid Services, International Journal of System Science, etc. His research
interests include service computing and cloud computing.

 2 S. Wang, X. Zhu and F. Yang

Xilu Zhu is a Senior Researcher in The Research Institution of China Mobile.
He received his PhD degree in Computer Science and Technology from Beijing
University of Posts and Telecommunications in 2011. His research interests
include service computing and cloud computing.

Fangchun Yang is currently a Professor in the Beijing University of Posts and
Telecommunication, China. He received his PhD degree in Communication
and Electronic System from the Beijing University of Posts and
Telecommunication in 1990. He is a fellow of the IET. He has published six
books and more than 80 papers. His research interests include network
intelligence, services computing, communications software, soft switching
technology and network security.

1 Introduction

Service-Oriented Architecture (SOA) provides a flexible framework for web service
composition (Zheng and Lyu, 2013). In SOA-based web service composition process, all
web services produced by service providers are registered in service registry centres
(such as UDDI). Then a service broker is used to help a customer select multiple
web services (with different functional attributes but same Quality of Service (QoS))
to composite a new value-added service according to her QoS requirements. Hence, how
to manage efficiently QoS of these web services is a critical problem in web service
composition area (Jarma et al., 2013).

The UDDI as a common web service registry centre is often used to manage most
data of web services such as service provider data, service implementation data and
service metadata. Unfortunately, with the increasing number of web services, there are
some disadvantages which are hardly solved in traditional central UDDI (ShaikhAli
et al., 2003). For instance, it is difficult to manage and maintain mass web services. It is
also vulnerable to denial of service attacks. Besides, its low performance such as high
query cost, overload irritates its shortcoming.

Moreover, it is well known that an important usage of the UDDI is to provide QoS
attributes (e.g., response time, reliability, price, etc.) of web services for QoS-aware web
service composition. The reason is that the number of component services involved in
this composite service may be large and the number of web services from which these
component services are selected is likely to be even larger (Zeng et al., 2004). Then, the
QoS of the resulting composite service executions is a determinant factor to ensure
customer satisfaction. However, different users may have different requirements and
preferences about this QoS. For instance, a customer may want lessening the response
time while satisfying certain constraints with price and reliability, while another user may
give more importance to the price than to the response time. A QoS-aware approach to
web service composition is therefore needed, which maximises the QoS of composite
services by taking into account the constraints and preferences set by the customers
(Blanco et al., 2012).

However, the numbers of same or different category web services become larger and
larger in composition process (Jiuyun and Reiff-Marganiec, 2008; Ma and Zhang, 2008;
Su et al., 2008). The composition performance is much lower when it is based on

 Efficient QoS management for QoS-aware web service composition 3

the traditional central UDDI. Moreover, it often merely considers the common QoS
attributes, e.g., availability, reliability, cost, response time and reputation. Other non-
functional attributes related to different business, e.g., performance, compensation,
cannot be covered. Hence, it is very necessary to manage efficiently the QoS data of web
services for improving the performance of web service composition (Zheng and Lyu,
2010; Zheng et al., 2010).

In this paper, we propose an efficient QoS management approach for QoS-aware web
service composition in distributed computing environments. First, a P2P distributed hash
table (called Chord) is used to classify web services. Each peer in the Chord maintains a
category. The aim of classifying web services is to better manage QoS since it is great
disparity among the QoS of web services from various businesses. By classifying web
services, we can ensure the comparability among QoS and improve the query efficiency.
Second, based on classifying web services, we design a QoS tree to manage the QoS data
of all web services in Chord. The QoS tree can support efficient complex query. Finally,
to lessen the QoS query in QoS tree, a load balance strategy is adopted. Moreover,
relying on the managed QoS, a QoS-aware web service composition approach is
proposed via particle swarm optimisation algorithm with customers’ QoS constraints. By
using a real QoS data of web service and a synthetic QoS data, we evaluate our proposed
two approaches. Experimental results show that our approaches outperform other
schemes.

We organise the paper as follows: Section 2 introduces the related work about QoS
management of web services. Section 3 introduces our proposed QoS management
approach, including classifying web services via Chord and Managing QoS via
constructing a QoS tree. Based on the QoS management, a QoS-aware web service
composition approach is proposed by using particle swarm optimisation in Section 4.
Section 5 gives experimental results, including evaluating our proposed tow approaches
and comparing them with other approaches. Finally, Section 6 ends the paper.

2 Related work

An efficient management approach for QoS can help customers to composite best
suitable web services according to their QoS requirements. Obviously, QoS plays an
important role in web service Composition. Hence, many notable QoS management
scheme are proposed in an industry and academia.

Hongan et al. (2003) proposed a QoS management scheme. It is deployed in a QoS
broker between web service clients and web service providers. The broker collects most
QoS information about service providers that may offer qualified web services to a client.
It is similar to this scheme; Singhera et al. (2004) integrated the QoS management into
the UDDI. Then they developed a system to measure, collect and publish the QoS value
of web services. However, they are not distributed UDDI. Hence, to avoid the drawbacks
of the central UDDI, some distributed models are proposed. For instance, a distributed
QoS registry architecture (Fei et al., 2008), a P2P system supporting distributed QoS
register (Ragab et al., 2008) and Chord4S (Qiang et al., 2008).

Although these distributed models in the above literatures are worthy to learn.
However, they cannot support an efficient complex query. Moreover, they did not
consider the influence of QoS storage, query and load balance to QoS management.

 4 S. Wang, X. Zhu and F. Yang

Different previous related work, to improve the efficiency of QoS querying, we take the
problem as a multi-attribute complex query. Unfortunately, we find that the traditional
P2P with Distributed Hash Table (DHT) cannot effectively support the complex query.
Although, the Content-Addressable Network (CAN) (Ratnasamy et al., 2001) can support
multi-dimension query, the efficiency is much lower as the increasing dimension. Similar
to the CAN, KD-tree (Bentley, 1975; Ganesan et al., 2004; Zhang et al., 2005) divided
the space based on the equal data and uses the binary tree to index the space data.
However, these distributed structures are only suitable for the specific P2P network.
They cannot be used for web services. Hence, we propose a distributed QoS management
approach based on the relation among the multi-dimension vector to support efficient
QoS management. Moreover, different previous QoS-aware web service composition
schemes, we cannot direct take the QoS data into service composition because of their
high redundancy and low accuracy. We take the QoS query results into service
composition to lessen computation cost and improve the optimality. Moreover, different
our previous work (Fei et al., 2008; Zhu and Wang, 2010; Wang et al., 2012; Wang et al.,
2013a; Wang et al., 2013b), in this paper, we not only consider the QoS management of
web services, but also take the managed QoS data into QoS-aware web service
composition process for value-add business applications.

At present, the problem of QoS-aware web service composition has received a lot of
considerable attention during the last years in the service computing community. Zeng
et al. (2003) adopted the global optimisation approach to find the best service
components for the composition by linear programming. Soon afterwards, Cardellini
et al. (2007) also used linear programming to optimise user’s end-to-end QoS constraints,
but it differs in the solution of the optimisation problem. Ardagna and Pernici (2007)
extended the linear programming model to include local constraints. These linear
programming approaches are effective when the size of the problem is not very large.
However, their scalability is very poor due to the exponential time complexity of the
applied search algorithms with the increasing size of the problem. Cardinale (2011)
presented a selection algorithm that satisfies the user query functional conditions
expressed as input and output attributes, QoS requirements represented by weights over
criteria and transactional properties expressed as a risk level. Blanco et al. (2012)
proposed sampling-based techniques to accurately estimate QoS values that will be used
in a hybrid composer, to identify the compositions that best meet a user request. Jiang
et al. (2012) proposed an event driven continuous query algorithm for QoS-aware
automatic service composition problem to cope with different types of dynamic services.
The approach can solve the functional and non-functional parameters of web services
dynamic change. However, the computation time of service composition remains out of
real time requirements when web services increase.

Although efforts and results above have been made and obtained in web service
composition area, existing technologies on web service composition little considered the
computation time or time complexity. They are still not mature yet and require
significant efforts. In this paper we propose an approach to composite web services with
the QoS management results. By discarding redundant web services via our proposed
QoS management approach, a particle swarm optimisation is used to find the optimal
solution for web service composition with short computation time.

 Efficient QoS management for QoS-aware web service composition 5

3 Proposed QoS management approach

As shown in Figure 1, our proposed QoS management approach contains the following
two phases, i.e. classifying web services (Section 3.1) and Managing QoS (Section 3.2).
As the foundation of QoS management, the first phase is very simple and its aim is to
classify web services into a distributed network. The key of the approach is the second
phase. After classified, we can quantify the QoS of web services and store them in a QoS
tree. This phase is a bit more complicated and relying on three parts to manage QoS, that
is, constructing QoS tree, designing rules and applying QoS tree.

Figure 1 QoS management approach of web services (see online version for colours)

Reliabi
lity

Availability

QoS

QoS

QoS

QoS

QoS

query

query

query

Peer

Pe
er

Peer

Peer

SubPeerSubPeer

SubPeer

SubPeer

join

Peer

Mapping QoS into multi-
dimension space

Managing QoS by
QoS Tree

WS WS

WS

1C

2C3C4C

5C 6C

7C 8C
9C

1C 2C 3C 4C

5C

6C

7C

8C
9C

join
Web services in a domain

QoS of Web service

join
SubDomainOf

Peer for Web services

3.1 Classifying web services via chord

In first phase, we adopt a P2P distributed hash table (called Chord) (Stoica et al., 2001) to
classify web services. Chord is a protocol and algorithm for a P2P distributed hash table.
It stores key-value pairs by assigning keys to different computers (known as ‘nodes’). A
node will store the values for all the keys for which it is responsible. Chord specifies how
keys are assigned to nodes and how a node can discover the value for a given key by first
locating the node responsible for that key.

By using Chord, each peer manages the web services which belong to the same
domain. We use the domain ontology to represent their domain. Then, a node of the
domain ontology is assigned to a peer in the Chord ring.

The Chord ring with positions numbered 0 to 2m – 1 is formed among nodes. Key k is
assigned to node successor(k), which is the node whose identifier is equal to or follows
the identifier of k. If there are N nodes and K keys, then each node is responsible for
roughly K/N keys. When a new node joins or leaves the network, responsibility for
O(K/N) keys changes hands. If each node knows only the location of its successor, a
linear search over the network could locate a particular key. This is a naive method for
searching the network, since any given message could potentially have to be relayed
through most of the network.

 6 S. Wang, X. Zhu and F. Yang

The search speed of the Chord is very fast. Chord requires each node to keep a
“finger table” containing up to m entries. The i-th entry of node n will contain the address
of successor ((n + 2i – 1) mod 2m). With such a finger table, the number of nodes that must
be contacted to find a successor in an N-node network is O (logN).

From the description of the Chord ring, we found that the search process of web
service’s domain in the Chord ring is a complex query. The reason is that the search must
consider the peer which manages the domain proposed by customer and the descendant
node in the domain ontology tree. For example, when C6 is required to search C7, then
C8, C9 are also need to be involved. Moreover, when a web service joins the Chord ring,
the first step is to locate the peer corresponding to the web service’s domain ontology and
then the QoS will be mapped to a normalised multi-dimension space composed by
multiple attributes. Finally, the QoS of the web service will be mounted to a specific
node in the QoS tree (Section 3.2). Except a peer in the Chord ring, there is another type
peer, called subpeer, to manage the node in the QoS tree. Peer in the Chord will connect
one subpeer to forward the QoS request to subpeers. When a peer quit the Chord, a
subpeer is selected to replace its position.

3.2 Managing QoS via QoS tree

In this section, we give a description how to manage QoS of web services via QoS tree.

3.2.1 Constructing QoS tree

To construct the QoS tree, we adopt the quantitative method to describe the QoS values.
Different from the qualitative description which often uses OWL-S, the quantitative

description’s advantage is institutive, and the cost of storage is relatively small. Before
adding the quantified QoS into the QoS tree, we map them to a normalised space to set
the range of different types of QoS values. In this paper, we set the all QoS attributes
range is [0,100]. The more the QoS value is close to 100, the better the web service in
that attribute is. The threshold is set to reduce the computation cost. For example, any
QoS value is greater or less than the threshold is deemed as 100 or 0. The relation
between normalised QoS values can be considered as the Pareto dominance. To construct
the QoS tree, we extend this dominance relation to the following three types, i.e., strong
dominance, dominance and weak dominance.

Definition 1: (Strong Dominance). There are two web services, WSA and WSB. The QoS
value of WSA can be denoted as 1 1 2(,)mQoS q q q  . The QoS value of WSB can be

denoted as ' ' '
2 1 2(,)mQoS q q q  . If only if '{1, , } i ii m q q   and 1 2QoS QoS , then

1 1 2(,)mQoS q q q  strong dominate 1 1 2(,)mQoS q q q  .

Definition 2: (Dominance). There are two web services, WSA and WSB. The QoS value of
WSA can be denoted as 1 1 2(,)mQoS q q q  . The QoS value of WSB can be denoted as

' ' '
2 1 2(,)mQoS q q q  .If only if '{1, , } i ii m q q   and 1 2QoS QoS , then 1 1(,QoS q

2)mq q dominate ' ' '
2 1 2(,)mQoS q q q  .

Obviously, from the above two definitions, the strong dominance is an exception of
the dominance. Hence, in this paper, we use the mark all to include the two types.

 Efficient QoS management for QoS-aware web service composition 7

Definition 3: (-weak Dominance). There are two web services, WSA and WSB. The QoS
value of WSA can be denoted as 1 1 2(,)mQoS q q q  . The QoS value of WSB can be

denoted as ' ' '
2 1 2(,)mQoS q q q  . If only if '{1, , } i ii m q q   and 1 2QoS QoS , where

the number of qi  q is  and  < m, then 1 1 2(,)mQoS q q q  -weakly dominate
' ' '

2 1 2(,)mQoS q q q  .

So according to the three definitions, we find that those satisfied QoS values must
dominate or strongly dominate the QoSuser proposed by user. If the node in QoS tree can
maintain these relations, it might reduce the searching cost and improve the search
efficiency. Thus, as shown in Figure 2, we give a description of the data structure of a
node in QoS tree.

Figure 2 The data structure of the node in QoS tree

dominance

-weak dominance

QoS

QoS1 QoS2

From Figure 2, the
1QoSnode managed by LeftChild is strongly dominate or dominate by

the nodeQoS. The
2QoSnode managed by RightChild -weakly dominate by the nodeQoS.

The QoS denotes the non-functional vector (1 2, nq q q) and
1

1 n

i
i

Val q
n 

  is the average

value of the QoS vector. Then, according the node’s data structure, we find that the QoS
tree contains the following two properties.

Theorem 1: When the
1QoSnode is the left child of the nodeQoS and the

2QoSnode is the right

child of the
1QoSnode , then 1 2all allQoS QoS QoS  . When the Val of the nodeQoS is less

than the customer’s requirement QoSuser, the nodeQoS must not satisfy the customer’s
requirement.

Proof: Known by the reduction ad absurdum, if QoS satisfies the condition:
'{1, , } j jj m q q   , jq QoS , '

j userq QoS , then the Val of the nodeQoS must be

more than customer’s requirement QoSuser. However, it is contrary to the condition. Thus,
we can conclude that the Val of the node nodeQoS is less than the customer’s requirement
QoSuser. Therefore, the nodeQoS must not satisfy the customer’s requirement.

Theorem 2: If the QoS is -weak dominated by customer’s requirement QoSuser and  is
the maximum in the leftmost nodes, the left descendants of the nodeQoS must not strongly
dominate or dominate QoSuser.

Proof: Known by the reduction and absurdum, because the 'QoS of the nodeQoS ‘s left

descendants
1QoSnode dominate QoSuser, the value in the 'QoS vector must be equal or

 8 S. Wang, X. Zhu and F. Yang

great than QoSuser. Therefore, the 'QoS must -weakly dominate QoS. However, it’s

inconsistent with the condition that the QoS strongly dominate the 'QoS . Thus, we

conclude that the QoS of the nodeQoS‘s left descendant must not strongly dominate or
dominate QoSuser.

Hence, according two Theorems, we find that the comparison cost for researching the
QoS tree can be lessened.

3.2.2 Designing rules for QoS tree

According to the node’s data structure, as shown in Algorithm 1, we propose a joining
QoS tree algorithm to to help a new QoS vector join the QoS tree.

Algorithm 1. Joining QoS tree

Input: node oldNode, node newNode;
Switch (compare(oldNode, newNode)
case 0: //-weakly dominated
 addInRightSubTree(oldNode, newNode);
case 1: // dominate or strong domination
 addInLeftSubTree(oldNode, newNode);
case 2: //dominated
 newNode replace the position of oldNode;

In Algorithm 1, the first step is to compare a new QoSnew vector with the root‘ QoS. If the
QoS of the nodeQoS dominate QoSnew, the addInLeftSubTree function will be invoked.
Then QoSnew will be continuous to compare with the leftmost node until it finds a node
which has dominated or -weakly dominated relation. If the QoSnew dominate the QoS, it
will become the nodeQoS‘s parent; otherwise, the addInRightSubTree function is invoked.
In that function, the QoSnew continues to compare with the nodeQoS‘s rightmost child by
using the Val until the node’s Val is less than the 'QoS

node . Thus, the QoSnew will be

mounted on the
newQoSnode by repeatedly invoking the NodeJoin function.

From Algorithm 1, we find that the left child node of a QoS tree can be considered as
the index for a new QoS join, it’s critical for the search efficiency. We call these nodes as
index node, and it can be represented by nodeindex. The leftmost node of a QoS tree is the
main index of the QoS tree, thus, it is denoted by Mnodeindex.

Moreover, if we compare with nodeindex step by step, the search efficiency will be
very low. The time complexity of iterative comparison is ()n and the time complexity

cost of comparing rightmost node in the addInRightSubTree procedure is the same as that
of comparing with nodeindex. As large number of web services joins to a peer, the
construction and the search cost will grow. Thus, it’s necessary to add some new element
to the node structure. Since the leftmost node and the rightmost node have the transitive
relation, we add the binary search tree to manage this transitive relation. Thus, each node
not only stores its left child, right child and parent, but also stores the node which is
immediate in the binary search tree. The time complexity will reduce to 2(log)n . We

take Figure 3 as an example to design some rules for constructing QoS tree.

 Efficient QoS management for QoS-aware web service composition 9

Figure 3 QoS tree

Val
>

Val

dominance or strong dominance relation

weak dominance

ne
ig

hb
or

 re
la

tio
n

1-st 2-st

n-st
1QoS

2QoS

3QoS

Rule 1: In the QoS tree, the Mnodeindex is critical for search efficiency. To simplify
the index construction, we consider the diagonal of the hypercube as the index. That is,
a strong dominance relation vector sequence is introduced    0, ,0 1, ,1   

 100, ,100 .

Rule 2: When a new QoSnew joins a nodeQoS‘s right-side subtree, nodeQoS must be
maximum -weak dominated. For example, Comparing to the Mnodeindex (50,50,50) and
(60,60,60), the new QoS vector (52,45,65) will be mounted on (50,50,50) ‘s right child
due to the maximum -weak dominance.

Rule 3: When a new QoSnew joins a Mnodeindex‘s right-side subtree, and it will be
classified according to similar position in the vector. For example, when the

1QoSnode is

QoS1 (50, 60, 70) and the
2QoSnode is QoS2(60, 50, 70). They will join the right tree of

Mnodeindex, which has QoS (50, 50, 50). QoS1, QoS2 has the same value with QoS vector
at 1-th place, 2-th place, respectively. Then

1QoSnode will be classified in first class and

2QoSnode will be classified in second class.

3.2.3 Applying QoS tree to manage QoS

The above section describes the construction of QoS tree. To avoid the shortcomings of
the central model, it’s necessary to partition the QoS tree, and distributed the parts into
subpeers in practical web service application. Hence, in this section, we propose Range
Query algorithm, Subpeer Join and Quit algorithm and the load balance strategy.

Range Query

The main characteristic of QoS tree is to support the range query, any strongly dominate
or dominate the user’s requirement QoSuser can be accepted. To support this kind of
complex query, the content of the QoS tree route table includes the neighbours of the
main index vector sequence and the immediate relation node in binary search tree. In
addition, the subpeer which maintains the root in binary search tree is also included by
the other subpeers. Therefore, the cost of the exact query which locates the start subpeer
of range query is less than log 1n    . A QoS tree partition sample graph is depicted as

shown in Figure 4.

 10 S. Wang, X. Zhu and F. Yang

Figure 4 Range query on QoS tree (see online version for colours)

(i,i,i ... i)

(0,0,0 ... 0) (n,n,n ... n)

(2,2,2 ... 2)

(1,1,1 ... 1)

SubPeer1

Neighbor

Neig
hbo

r

Root

SubPeer2

SubPeer3

SubPeer4

SubPeer5

F
or

w
ar

d
M

es
sa

ge

SubPeer6

Forward
Message

In this sample graph, the route table of subpeer2 which maintains node (1,1,1,…1) and
node (2,2,2,…2) contains the subpeer3 and subpeer6. It has the immediate relation with
(1,1,1,…1) in binary search tree. The neighbours relation in main index vector sequence
(0,0,0…0) and (3,3,3…3) is irrespective, and the subpeer1 is also included. The
maximum depth of the route table is 6, if each subpeer only maintains one node in the
binary search tree. The communication cost of subpeer which maintains the node (0, 0,
0…0) is the least since the query cost is zero. Thus, it is selected to communicate with
the peer in Chord ring. According to the route table, the Range Query algorithm can be
described in Algorithm 2.

Algorithm 2: Range query

Step 1: use the exact query to find the maximum -weak dominant QoSuser‘subpeer,
each query’s startpoint is subpeer maintains (0,0,0…0), it will compare the QoSuser
with the root to judge whether the destination is at the left-side subtree or right-side
subtree.

Step 2: When the message is forward to the destination subpeer, it will broadcast the
message to the neighbours in terms of the route table. Each subpeer which receives
range query message does the local search according to the search algorithm of QoS
tree.

Step 3: return the query result, and the range query stops.

Subpeer join and leave

In practical application, some web services are hardly inquired by customers due to the
some poor quality attributes in QoS vector. Thus, it leads the subpeers which manage
them to pay less query load. According to the distribution of QoS values in the QoS tree,
the more reach to the root node, the more query load the subpeers will pay. Therefore, we
classify the subpeers into two types: the query subpeer and the storage subpeer. The
storage subpeer mainly manages the QoS which is hardly inquired by user and the query
subpeers share the query load. The partition of nodes among storage peers in terms of the
quantity, thus, the storage load of a subpeer is number of its QoS node. The partition of
the query subpeers rely on the query load. The query load of a node can be considered as

 Efficient QoS management for QoS-aware web service composition 11

the number of query times in a unit time, which is denoted by fQ, and the query load of a
Mnodeindex is Qf . Hence, the Subpeer Join algorithm can be described in Algorithm 2.

Algorithm 3: Peer Join

Input: Peer newPeer;

1. IF(QueryLoad()==0){
2. p= FindMostCrowdedPeer();
3. }
4. ELSE{
5. IF (!IsQueryLoadBalance()){
6. p=FindMaxLoadInQuerySubpeer();
7. }ELSE{
8. p= FindMaxLoadInStorageSubpeer ();
9. }
10. }

According to Algorithm 3, if the QoS tree hasn’t been inquired yet, it will select the
subpeer which maintains the most number of nodes to split. Otherwise, a new subpeer
relies on the query subpeers’s load imbalance to select the type of subpeer it will join. In
both join procedures, the new coming node will accept some node from the other
subpeer. The QoS node partition principle is to transfer a half type of node classification
defined in Rule 2. When receiving the QoSs, the new coming subpeer will construct a
new QoS tree for management. Contrary to the subpeer’s join, the leave procedure the
leaving procedure is invoked when a subpeer quit. Then the query subpeer will find
whether there is a storage subpeer can replace its position. If not, it will shed the load to
its neighbours which next to each other in main index vector sequence. As shown in
Algorithm 4, in our proposed Peer Leave algorithm, if the storage subpeer leaves its
position, it merely transfers its data to the neighbours and quit the system.

Algorithm 4: PeerLeave

Input: Peer lPeer;
1. IF(!IsQueryPeer(lPeer)){
2. AssginNodeToNeighbour();
3. }ELSE{
4. IF(numOf(RelaxPeer))>1
5. &&Nodein(least)< Nodein(lPeer)){
6. TakeOverBy (least, lPeer);
7. }
8. ELSE{
9. TakeOverByNeighbour(lPeer);
10. }
11. AcceptNewNode(p,newPeer);
12. }

Load balance

According to the literature (Ganesan et al., 2004), the load balanced P2P system has an
imbalance factor . That is, the ratio of the maximum load peer and the minimum load
peer is less than . The peerleave procedure mentioned above shows us that the storage

 12 S. Wang, X. Zhu and F. Yang

subpeers’ function is not only to manage some node, but also to help the overflowing
subpeer. Thus, these procedures is designed to ensure the query load balance among the

subpeers, q
q

ql


 . We use amortised analysis method to discuss the load balance. The

potential function is q s    , where

()
q

q q
p P

p


   (1)

()
s

s s
p P

p


   (2)

0 2

0

0 0

0
0 2

(| . |)
| . |

() 0 | . |

| . |
(| . |)

q
q

q q q

q q q

q q q
q

q

c
l p ld

l l p ld l

p l p ld u

c u p ld u
p ld u

l






 
  
   


 (3)

2() (| . |)s
s

s

c
p p nu

l
  (4)

where

0 ()
4
q

q ql l


 and 0
3

4
q

q qu l


 .

When a QoS vector adds in QoS tree, it might be inserted into storage subpeer or query
subpeer. Thus, the maximum increase in the potential is max(,)q s    where

0 2 0 2

2
2 0

(| . |) (| . |)

3
(2 | . | 2)

2

q q
q Q q q

q q

q q q q
Q Q q Q

q

c c
p ld f u p ld u

l l

c c l
p ld f f f

l




     

   

 (5)

with

 2 2((| . | 1) (| . |)) 2 | . | 1 2s s
s s s s

s s

c c
p nu p nu p nu c c

l l
        (6)

The increase potential  is bounded by a constant by the following:

23
max , 2

2
q q q

s s s

c l
c c




 
    

 
 (7)

The increase potential of deleting a QoS from DQoS tree is also bounded by the same
constant . Then, we find that the cost of load balance algorithm is less than the

 Efficient QoS management for QoS-aware web service composition 13

potential decrease by setting a proper cq and cs. When a query subpeer overflows, it will

transfer a half of query load
2
q ql

 to the new coming subpeer q. The potential decrease

by the following:

0 2 2(| . |) ()
4

q q
q query q q

q

c
p ld u c l

l


    (8)

The potential decrease of the storage subpeer is as follows:

2 2
1 1((| . |) (| . |)) (2)s

s s s s
s

c
p nu l p nu c l

l
      (9)

Since the maximum cost of this rebalance procedure is
2

q q
s s

Q

l
l

f


 . To ensure the cost is

less than the potential’s decrease, it must satisfy the inequality by the following:

2() (2)
4 2
q q q

q q s s s s s
Q

l
c l c l l

f

 
     (10)

In the load balance procedure of underflow, the inequality is as follows:

2() ()
4 4
q q

q q qc l l
 

 (11)

Therefore, by setting the constants cq and cs, the cost is less than the potential decrease.
We can prove that the amortised cost of inserts and deletes is a constant.

4 QoS-aware web service composition

4.1 What is service composition?

In this section we introduce several definitions for understanding service composition.

Definition 4: A composite service can be defined as an abstract representation of a
composition request  1= , , nS S , where  refers to n (n<1) required service classes

without referring to any concrete service.

In Definition 4, a service class Sj (jS  , and  1,j j jlS s s ) contains (1)l l 

service candidates which have same functional attributes and different QoS attributes. In
this paper, a service candidate denotes a concrete service, e.g., js (j js S) is a

transcoding service from Huawei.

Definition 5: QoS vector of a composite service  can be defined as 1{ (), ,Q q  

()}rq  , and ()iq  represents the estimated value of the i-th QoS attribute of  .

Definition 6: QoS vector of a service candidate s can be define as  1(), , ()rQs q s q s  ,

and qi(s) represents the estimated value of the i-th QoS attribute of s, which determines
the quality of each service candidate.

 14 S. Wang, X. Zhu and F. Yang

In this paper, service candidates have a number of different QoS attributes, and the
difference often result in large variation in their QoS values or scopes. Obviously, prefect
computing or evaluating QoS is very different for each service candidate. Hence,
Yu et al. (2007) proposed a QoS utility function to overcome the problem. The function
maps the quality vector QS into a single real value, and enables sorting and ranking of
service candidates and simplifying choosing to satisfy QoS constraints of the service
components. The QoS utility function adopted by this paper is similar to Yu et al. (2007).
What is the QoS utility function? For example, in the sequential composition model, the

throughput of QoS attributes can be calculated by 1() min ()
n

j jq q s and the reputation

can be calculated by
1

() ()
n

jj
q q s


  . Because other models (e.g., parallel, conditional

and loops) can be reduced or transformed to the sequential model with several techniques
for handling multiple execution paths and unfolding loops from (Jang et al., 2006), and
here omitted. Hence, in this paper, we also focus on the sequential composition model,
and then in the sequential composition model, the overall utility of a composite service
is computed by the following:

max
,

max min
1 , ,

()
() .

r
j k k

k
k j k j k

Q q s
U s w

Q Q




 (12)

max

max min
1

()
() .

r
k k

k
k k k

Q q
U w

Q Q




  (13)

with

max
, max ()

ji j
j k k ji

s S
Q q s

 
 , min

, min ()
ji j

j k k jis S
Q q s

 
 , max max

,
1

n

k j k
j

Q Q


  and min min
,

1

n

k j k
j

Q Q


 

where
1

(1)
r

k k
k

w R w



  represents users’ preferences; min
,j kQ is the minimum value of

the k-th attribute in all service candidates of the service class Sj;
max
,j kQ is the maximum

value of the k-th attribute in all service candidates of the service class Sj;
min
kQ is the

minimum value of the k-th attribute of  ; max
kQ is the maximum value of the k-th

attribute of  .
In service computing, service composition with global QoS constraints is a well-

know optimisation process. The optimal composition for a given service composition 
must satisfy the following two conditions (Wang et al., 2011):

1 For a given vector of global QoS constraints  1, , mC C  (0 m r ), ()q 

C (kC ) where ()q  is the aggregated QoS value of the composition service;

2 The maximum overall utility value ()U  in the composition service.

In order to solve the optimisation problem, we find that finding the optimal composition
requires enumerating all possible combinations of service candidates, which can be very
expensive in terms of computation time. Based on the previous work, we find that
particle swarm optimisation is an alternative scheme to solve the optimisation problem
based on the managed QoS results.

 Efficient QoS management for QoS-aware web service composition 15

4.2 Particle swarm optimisation

As it is well known that Particle swarm optimisation (PSO) is based on information
sharing and cooperation between particles in a swarm (Kennedy and Eberhart, 1995). A
particle is attracted by its personal best position (local optimisation) pbest and the best
position (global optimisation) of all particles in its neighbourhood pgbest. By randomly
changing the magnitude of these attractions, particles can search for better position in the
regions around pbest and pgbest. It assumes that the search space is d-dimensional and the

particle population is Np. Every particle in the swarm has a position ()i Npidx  , a velocity

vid and a memory pbest for its best found position, which are all updated in every iteraction
step of PSO. The best solution pgbest depends on the iteration number (maxit). At the
beginning, the Np particles are initialised with a random position. The fitness of all initial
position is evaluated by the fitness function, leading to an initial pgbest.

During every iteration step of PSO, the new position 1(1, 2, , max)t
idx t it   and new

velocity 1t
idv  of each particle are calculated by the following:

1
1 1 2 2(()) (())t t t t

id id best id gbest idw v c r t x c rv p p t x         (15)

1 1t t t
id id idxx v   (16)

where the parameter w (called the inertia weigh) is a measure for the sensitivity to
influences of pgbest and pbest, and controls the exploration behaviour of the swarm; The
parameters c1 and c2 are the cognitive ratio and the social ratio and used to control the
influence of pgbest and pbest on a particle’s new velocity; The random variables r1 and r2
are uniformly distributed (0,1)U (Demarcke et al., 2009).

4.3 Service composition based on QoS management

In this paper, binary decision variables are used in the problem to represent the service
candidate. A service candidate sji is selected in the optimal composition if its
corresponding variable xji is set to 1 and discarded otherwise. Then a fitness function (f)
is designed to maximise the overall utility value. By re-writing (12) to include the
decision variables, the fitness function can be expressed by the following:

max

1 1

max min
1

()

.

n l

k ji k jir
j i

k
k k k

Q x q s

f w
Q Q

 



 





 (17)

In order to ensure that global QoS constraints are satisfied in the composition, we add the
following set of constraints to the (17):

1 1

1

() ,1

1,1

n l

k ji ji k
j i

l

ji
j

q s x C k m

x j n

 



    


   





 (18)

Then by solving (17) and (18) using PSO, a list of service candidates are obtained and
returned to service broker providing a composition service for service users.

 16 S. Wang, X. Zhu and F. Yang

In order to find best services by PSO, a suitable coding scheme should be designed.
We use integer array coding scheme on the basis of the characters of service candidate.
The number of items in the array denotes the number of service classes. Each element of
the array denotes the index of service candidates. The maximum of the element is the
number of service candidates, and the minimum is 1. Therefore, all particles are coded as
n-dimensional arrays as shown in Figure 5. The velocities of the particles are also
encoded as n-dimensional arrays, and each element value of the velocity is an integer that
is over max max[,]V V  .

Figure 5 The particle coding scheme (see online version for colours)

A particle

S1 S2 Sn

sn1

Service candidates

Service classes

s11

s22

sn?
s1? s2?

5 Experiment

In order to prove the efficiency of the DQoS-tree, we implement a simulation platform
using JDK 1.6. The algorithms in this platform include the subpeer’ join and leave, range
query and the load balance. We compare QoS tree with KD-tree (Jang et al., 2006; Jiang
et al., 2012; Jarma et al., 2013) in the query performance by using two kinds of
experiment data. One is the real dataset, QWS which comes from the literature (Ma and
Zhang, 2008). QWS includes about 2500 web services with 11 types of non-functional
attributes. We choose some to do out experiments. Moreover, we use the synthetic data,
it contains 10000 QoS values, which are all range from [0, 100]. The experiment
environment is Pentium CPU 2.0G, 2G RAM, Windows XP.

Moreover, based on the QoS management, we also compare proposed service
composition approach with other approaches (Ardagna and Pernici, 2007; Wang et al.,
2010). The same parameters are set, including the number of service classes from 5 to 50
and the number of service candidates per class from 100 to 1000. The number of QoS
attributes and global QoS constraints in all these test cases are fixed to 3 and 2,
respectively. Other parameters are set such as w = 0.7, c1 = 2.0, c2 = 2.0, itmax = 30,
Np = 12. In the experiments, the capital letters ‘WSC’ represent our service composition
approach. The capital letters ‘MIP’ represent the approach in (Ardagna and Pernici,
2007). The capital letters ‘QoST’ represent the approach by Wang et al. (2010). All
results were collected in average after each approach running for 20 times.

 Efficient QoS management for QoS-aware web service composition 17

5.1 Query cost

The query cost experiment includes two types of query cost, the exact query cost and the
range query cost. The range query cost is to compute the cost of the compare times. The
exact query cost is to compute the hops which the message forward from the start
subpeer to the destination subpeer. Since the exact query in QoS tree is start from the
subpeer which manage the QoS vector (0, 0…0). Thus, the exact query in D-tree is to
count the hops from random subpeer to the subpeer which manage the QoS vector
(0, 0…0).

From Figure 6, the increasing dimension poses little affection to our approach with
respect to the two datasets. This can be explained by the reason that the nodes in QoS
tree of our approach maintain the strong-dominance or dominance relation. This can
reduce some compare cost to some extents. Moreover, the classification management of
rule 2 contributes to reduce compare cost. On the contrary, the peer in the KD-tree
doesn’t manage its data. Therefore, the compare cost increase sharply as the dimension
increase.

Figure 6 Range query cost (see online version for colours)

Figure 7 shows the comparison results in term of the exact query cost where 200
subpeers are invoked. From the experimental results, we find that the exact query cost of
our approach remains in a steady state. The reason is that the route table consists of the
neighbours which are the parent and child node in the binary search tree. The exact query
cost nearly is close to the average search length, and it will not increase as the dimension
or the number of subpeer increase. The exact query cost of KD-tree is lower than that of
QoS tree only when the dimension increases into 7-dimensions. The reason is that the
subpeer’s route table will grows as the dimension increases, especially, the skewed data.
Thus, it contributes to reduce the exact query cost. However, with the increasing numbers
of subpeers, the exact query cost will be not steady as the QoS tree does.

5.2 Query and storage load

There are two types of subpeer in our approach, query subpeer and storage subpeer. To
prove the query load satisfy the load imbalance factor , we use the real data, and assign
them to 100 subpeers. The query probability refers to the route algorithm which the
higher quality QoS has higher probability to be inquired. We continue to inquire the QoS
tree 1000 times. The fquery is 0.3, 0.4, respectively.

 18 S. Wang, X. Zhu and F. Yang

Figure 7 Cost of exact query (see online version for colours)

From Figure 8, the query load is relatively smooth due to the load balance operation. This
means that the compare times of our approach gradually increases with the increasing
numer of QoS vector of web service. Figure 9 shows that the storage load, i.e. the hops
gradually decreases with the increasing number of QoS vector of web service. Hence,
from Figures 8 and 9, the query and storage load are controlled within a reasonable
scope.

Figure 8 Query load (see online version for colours)

Figure 9 Storage load (see online version for colours)

 Efficient QoS management for QoS-aware web service composition 19

5.3 Load balance

The load balance experiments mainly describe the changes of the load imbalance factor
query and storage. For this experiment, there are total 100 subpeers managing 2500 real
QoS. This experiment is divided into 3 phases, the first phase is add 1000 QoS to the
QoS tree, the second phase is to add or delete QoS alternatively, and the final phase is
delete 1000 QoS from the QoS tree.

From Figure 10, the load-imbalance factor retains steady level which has minor
fluctuation, and the load-imbalance of the storage subpeers has a significant fluctuation
without the specific load balance operation. Figure 11 shows the communication cost of
the subpeers join and leave when the overflow or underflow occurs. We find that when
the overflow or underflow occurs, the number of adjusted nodes is fewer than 50 nodes
in most instances.

5.4 Computation time of service composition

In this section, we compare our service composition approach with MIP on computation
time.

As shown in Figure 12, we compare the computation time of WSC and MIP with
respect to the number of service candidates. In the experiment, the number of service
classes is 5–15 (random) for the QWS dataset and the synthetic data in all test cases.

Figure 10 Load balance of query and storage (see online version for colours)

Figure 11 Load balance cost (see online version for colours)

 20 S. Wang, X. Zhu and F. Yang

Figure 12 The computation time with respect to the number of service candidates (see online
version for colours)

As shown in Figure 13, we compare the computation time of WSC, MIP and QoST with
respect to the number of service classes. In this experiment, the number of service
candidates is 100–500 (random) for the QWS dataset and 100–500 (random) for the
synthetic data.

Figure 13 The computation time with respect to the number of service classes (see online version
for colours)

From the two figures above, regardless of the QWS real dataset, the synthetic data, the
computation time of our approach is obviously shorter than that of MIP with respect to
the number of service classes and service candidates. The reason is that many redundant
QoS data are removed in our QoS tree. The search space of our service composition
approach is less than MIP.

5.5 Optimality of service composition

In this experiment, we evaluate the quality of the results obtained. ‘optim1’ represent
the overall utility value of the composition service by WSC. ‘optim2’ represent the
overall utility value of the optimal composition services by MIP. Then the optimality of
our approach can be calculated by optim1/optim2. The optimal degree of MIP is 100%
(because of optim2/optim2).

Figures 14 and 15 shows the optimal degree of our approach and MIP with respect to
the number of service candidates and service classes, respectively.

 Efficient QoS management for QoS-aware web service composition 21

From the simulation results, the optimality of our approach is 94.8% on average and
almost close to the optimal solution of MIP (the optimal degree is always 100%).
Because this gap (5.2%) is very little, it is acceptable for the service composition based
on global QoS constraints. What’s more, in user-centric web service environment, the
optimality of composition result of our approach is almost the same as that of MIP, but
the computation time of our approach is much fewer than MIP. Hence, the QoE (Tasaka
and Yoshimi, 2008) of our approach is much better than MIP.

6 Conclusions

In order to efficiently and correctly search the qualified QoS of web service and avoid the
shortcomings of the central web service register for QoS management, we propose a two
phase QoS management approach. The key of the approach is to construct a QoS tree for
manage the QoS of web service. Moreover, based on QoS management results, we also
propose a QoS-aware web service composition approach via a particle swarm
optimisation. Extensive experiments show that our proposed two approaches can
outperform better performance than other approaches in terms of query cost, computation
time and optimality.

Acknowledgements

The work presented in this study is supported by the National Natural Science
Foundation of China under Grant No.61202435; National Natural Science Foundation of
China under Grant No. 61272521; Natural Science Foundation of Beijing under Grant
No.4132048; Specialized Research Fund for the Doctoral Program of Higher Education
under Grant No. 20110005130001; Program for New Century Excellent Talents in
University of China under Grant No.NCET-10-0263; Innovative Research Groups of the
National Natural Science Foundation under Grant No.61121061.

References

Ardagna, D. and Pernici, B. (2007) ‘Adaptive service composition in flexible processes’, IEEE
Transactions on Software Engineering, Vol. 33, No. 6, pp.369–384.

Bentley, J.L. (1975) ‘Multidimensional binary search trees used for associative
searching’,Communications of the ACM, Vol. 18, No. 9, pp.509–517.

Blanco, E., Cardinale, Y. and Vidal, M.E. (2012) ‘Experiences of sampling-based approaches for
estimating QoS parameters in the web service composition problem’, International Journal of
Web and Grid Services, Vol. 8, No. 1, pp.1–30.

Cardellini, V., Casalicchio, E., Grassi, V. and Lo Presti, F. (2007) ‘Flow-based service selection for
web service composition supporting multiple QoS classes’. Proceedings of IEEE International
Conference on Web Services, ICWS 2007, 9–13 July, Salt Lake City, UT, USA, pp.743–750.

Cardinale, Y. (2011) ‘CPN-TWS: a coloured petri-net approach for transactional-QoS driven
web service composition’, International Journal of Web and Grid Services, Vol. 7, No. 1,
pp.91–115.

Demarcke, P., Rogier, H., Goossens, R. and De Jaeger, P. (2009) ‘Beamforming in the presence of
mutual coupling based on constrained particle swarm optimization’, IEEE Transactions on
Antennas and Propagation, Vol. 57, No. 6, pp.1655–1666.

 22 S. Wang, X. Zhu and F. Yang

Fei, L., Fangchun, Y., Kai, S. and Sen, S. (2008) ‘A policy-driven distributed framework for
monitoring quality of web services’, Proceedings of IEEE International Conference on Web
Services, ICWS 2008, 23–26 September, Beijing, China, pp.708–715.

Ganesan, P., Yang, B. and Garcia-Molina, H. (2004) ‘One torus to rule them all: multi-dimensional
queries in P2P systems’, Proceedings of the 7th International Workshop on the Web and
Databases, WebDB 2004, 17–18 June, Paris, France, pp.19–24.

Hongan, C., Tao, Y. and Kwei-Jay, L. (2003) ‘QCWS: an implementation of QoS-capable
multimedia web services’, Proceedings of the 5th International Symposium on Multimedia
Software Engineering, MSE 2003, 10–12 December, Taichun, Taiwan, pp.38–45.

Jang, J.H., Shin, D.H. and Lee, K.H. (2006) ‘Fast quality driven selection of composite
web services’, Proceedings of the 4th European Conference on Web Services, ECOWS 2006,
4–6 Decemeber, Zurich, Switzerland, pp.87–96.

Jarma, Y., Boloor, K., de Amorim, M.D., Viniotis, Y. and Callaway, R.D. (2013) ‘Dynamic service
contract enforcement in service-oriented networks’, IEEE Transactions on Services
Computing, Vol. 6, No. 1, pp.130–142.

Jiang, W., Songlin, H., Lee, D., Gong, S. and Zhiyong, L. (2012) ‘Continuous query for QoS-aware
automatic service composition’, Proceedings of the 19th International Conference on Web
Services, ICWS 2012, 24–29 June, Honolulu, Hawaii, USA, pp.50–57.

Jiuyun, X. and Reiff-Marganiec, S. (2008) ‘Towards heuristic web services composition using
immune algorithm’, Proceedings of IEEE International Conference on Web Services, ICWS
2008, 23–26 September, Beijing, China, pp.238–245.

Kennedy, J. and Eberhart, R. (1995) ‘Particle swarm optimization’, Proceedings of IEEE
International Conference on Neural Networks, ICNN 1995, 27 November–1 December, Perth,
Australia, pp.1942–1948.

Ma, Y. and Zhang, C. (2008) ‘Quick convergence of genetic algorithm for QoS-driven web service
selection’, Computer Networks, Vol. 52, No. 5, pp.1093–1104.

Qiang, H., Jun, Y., Yun, Y., Kowalczyk, R. and Hai, J. (2008) ‘Chord4S: a P2P-based
decentralised service discovery approach’, Proceedings of IEEE International Conference on
Services Computing, SCC 2008, 7–11 July, Honolulu, HI, USA, pp.221–228.

Ragab, K., Haque, A.U. and Zahrani, M. (2008) ‘Wait time management for efficient web service
discovery service with P2P architecture’, Proceedings of the 10th IEEE International
Conference on High Performance Computing and Communications, HPCC 2008,
25–27 September, Dalian, China, pp.923–928.

Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S. (2001) ‘A scalable content-
addressable network’, Computer Communication Review, Vol. 31, No. 4, pp.161–172.

ShaikhAli, A., Rana, O.F., Al-Ali, R. and Walker, D.W. (2003) ‘UDDIe: an extended registry for
Web services’, Proceedings of the International Symposium on Applications and the Internet
Workshops, SAINT-W 2003, 27–31 January, Orlando, Florida, USA, pp.85–89.

Singhera, Z.U. (2004) ‘Extended Web services framework to meet non-functional requirements’,
Proceedings of International Symposium on Applications and the Internet Workshops, SAINT-
W 2004, 26–30 January, Tokyo, Japan, pp.334–340.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F. and Balakrishnan, H. (2001) ‘Chord: a scalable
peer-to-peer lookup service for internet applications’, Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computers Communications,
SIGCOMM 2001, 27–31 August,San Diego, CA, USA, pp.149–160.

Su, S., Li, F. and Yang, F.C. (2008) ‘Iterative selection algorithm for service composition in
distributed environments’, Science in China Series F-Information Sciences, Vol. 51, No. 11,
pp.1841–1856.

Tasaka, S. and Yoshimi, H. (2008) ‘Enhancement of QoE in audio-video IP transmission by
utilizing tradeoff between spatial and temporal quality for video packet loss’, Proceedings of
IEEE Global Telecommunications Conference, GLOBECOM 2008, 30 November–4
December, New Orleans, LA, USA, pp.1–6.

 Efficient QoS management for QoS-aware web service composition 23

Wang, S.G., Liu, Z.P., Sun, Q.B., Zou, H. and Yang, F.C. (2013a) ‘Pruning redundant services for
fast service selection’, International Journal of Computational Methods, Vol. 10, No. 6.

Wang, S.G., Sun, Q.B. and Yang, F.C. (2010) ‘Towards web service selection based on QoS
estimation’, International Journal of Web and Grid Services, Vol. 6, No. 4, pp.424–443.

Wang, S., Sun, Q., Zou, H. and Yang, F. (2013b) ‘Particle swarm optimization with skyline
operator for fast cloud-based web service composition’, Mobile Networks and Applications,
Vol. 18, No. 1, pp.116–121.

Wang, S.G., Zheng, Z.B., Sun, Q.B., Zou, H. and Yang, F.C. (2011) ‘Reliable web service
selection via QoS uncertainty computing’, International Journal of Web and Grid Services,
Vol. 7, No. 4, pp.410–426.

Wang, S., Zhu, X., Sun, Q., Liu, Z. and Yang, F. (2012) ‘A distributed quality of service index
framework’, Advanced Science Letters, Vol. 7, No. 1, pp.98–102.

Yu, T., Zhang, Y. and Lin, K.J. (2007) ‘Efficient algorithms for web services selection with end-to-
end QoS constraints’, ACM Transactions on the Web, Vol. 1, No. 1, pp.1–26.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J. and Sheng, Q.Z. (2003) ‘Quality driven web
services composition’. Proceedings of the 12th international conference on World Wide Web,
WWW 2003, 20–24 May, Budapest, Hungary.pp.411–421.

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J. and Chang, H. (2004) ‘QoS-
aware middleware for web services composition’, IEEE Transactions on Software
Engineering, Vol. 30, No. 5, pp.311–327.

Zhang, C., Krishnamurthy, A. and Wang, R. (2005) ‘Brushwood: distributed trees in peer-to-peer
systems. in Castro, M. and Renesse, R. (Eds): Peer-to-Peer Systems IV, Springer Berlin
Heidelberg.

Zheng, Z. and Lyu, M.R. (2010) ‘Collaborative reliability prediction of service-oriented systems’,
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE
2010, 1–8 May, Cape Town, South Africa, pp.35–44.

Zheng, Z. and Lyu, M.R. (2013) ‘Personalized reliability prediction of web services’, ACM
Transactions on Software Engineering and Methodology, Vol. 22, No. 2, pp.1–28.

Zheng, Z., Zhang, Y. and Lyu, M.R. (2010) ‘Distributed QoS evaluation for real-world
web services’, Proceedings of the 8th International Conference on Web Services, ICWS 2010,
5–10 July, Miami, FL, USA, pp.83–90.

Zhu, X. and Wang, B. (2010) ‘A distributed quality of service index framework’, Proceedings of
2010 IEEE Asia-Pacific Services Computing Conference, APSCC 2010, 6–10 December,
Hangzhou, China.pp.123–130.

