
Efficient and Reliable Service Selection for Heterogeneous

Distributes Software Systems

Shangguang Wang1, Lin Huang1, Lei Sun1, Ching-Hsien Hsu2, Fangchun Yang1
1State Key Laboratory of Networking and Switching Technology; 2Department of Computer Science and Information

1Engineering Beijing University of Posts and Telecommunications; 2Chung Hua University
1Beijing 100876, China; 2Hsinchu 707, Taiwan

{sgwang; huanglin; sunlei}bupt.edu.cn; chh@chu.edu.tw; fcyang@bupt.edu.cn

Abstract—The service-oriented paradigm is emerging as a new
way to heterogeneous distributes software system that are
composed of services locally or remotely accessed by middleware
technology. How to select the optimal composited service from a
set of functionally equivalent services but different QoS attributes
has become a hot research in service community. However existing
middleware solutions or approaches are inefficient as they search
all solution spaces. More importantly, they neglect the QoS
inherently uncertainty due to the dynamic network environment. In
this paper, based on a service composition middleware framework,
we propose an efficient and reliable service selection approach that
attempts to select the best reliable composited service on the basis
of filtering low reliable services by computing QoS uncertainty.
The approach first employs information theory and probability
theory to abandon high QoS uncertainty services and downsize the
solution spaces. A reliability fitness function is then designed to
select the best reliable service for composited services. We
experimented with real-world and synthetic datasets and compared
our approach with other approaches. Our results show that our
approach is not only fast, but also find more reliable composited
services.

Keywords-service selection; service composition; QoS
uncertainty; Entropy; Variance

1. INTRODUCTION

Services are commonly regarded as black boxes with
well-defined interfaces that can be recursively aggregated
into new service by service composition technology [1]. An
important aspect of service composition is the finding and
binding of services in order to compose them into a
composite application. Service composition has become the
kernel technology in the domain of service-oriented
architecture (SOA) which is able to meet the business
requirements of heterogeneous distributes software systems.

According to the SOA paradigm, composite applications
are specified as abstract processes composed of a set of
abstract services (called service class). Then, at service run
time, for each service class, a concrete service (called
service candidate) is selected and invoked. This case
ensures loose coupling and flexibility of the design for
many business applications distributed within and across
organizational boundaries [2].

As well known, QoS (e.g. response time, reliability and
throughput) plays an important role in determining the
performance of selected services for service composition
middleware [3]. Traditional service discovering and

matching approaches (e.g., UDDI, Bluetooth) only focus on
searching services with functionalities. But with the
violently growth number of services, typically, there are a
lot of service which is functionally equivalent providing for
users, leading to users do not know which service should be
selected. Hence, QoS-based service selection approach is
proposed aiming at finding the best combination of services
that satisfy a set of end-to-end QoS constraints from user’s
requests.

Some notable service selection approaches include
Hybrid [4], GA [5], Replanning [6], CAR & AR [7], MIP [8],
and Heuristic [9]. Although these approaches have been
shown to perform well in their respective context, it turns out
that they are not suited for composited services because of
violent QoS fluctuation of services (e.g. the response time of
service changes over time). They are lacking in considering
the uncertainty of QoS so that they cannot provide reliable
services for users in composition system due to dynamic
service environments. Generally, service candidates
participating in service selection widely distribute in the
network. These services come from different
organizations/systems and run on different platforms. Hence,
any slight changes in location, network environment, service
requirement time, and other aspects will affect the reliability
of these service candidates [10]. Therefore, it is worth
noting that a service with consistently good QoS is typically
more reliable than a service with a large Variance on its
QoS. Therefore, consistency should be considered as an
important criterion for reliable service selection.

In addition, there is an old or new question we have to
face. Are there really massive services with same functional
attribute but different QoS? The statistics published by the
Web services search engine Seekda! indicated that the
number of Web services increased exponentially over the
recent years. Before Cloud computing, many researchers
want to know whether they can be used as service
candidates of each service class. Some researchers may be
pessimistic. But now, the pay-per-use business model
promoted by the Cloud Computing paradigm may enable
service providers to offer massive services (e.g.,
infrastructure as a service, platform as a service, and
software as a service) to public, private or hybrid Cloud
platforms [11]. Hence, in a vision for the future, there will
be massive services. However, most existing approaches
suffer from a concentrated workload with the increasing
number of services, which causes poor real-time. The main
reason is that they focused too much on the optimization of

selection approaches to reduce time cost within service
selection process. They neglected a basic principle: how to
reduce the search space of service candidates (called
solution space) is more important than only focusing on the
seeking or optimization of service selection approaches.

Different from most existing approaches, this paper, we
propose an efficient and reliable approach do not only
consider the QoS uncertainty of services, but also pay close
attention to downsize the solution spaces of service
selection process. The QoS uncertainty is used to filter low
reliable services by information theory and probability
theory. The higher the QoS uncertainty of a service is, the
lower the reliability of the service is, and then it must be
filtered from the service candidates. Why do we use the
information theory and probability theory in this paper?
Entropy is used to measure the expectations of a random
variable and its numerical value can excellently reflect the
degree of a service’s disorder. Also, the main role of the
Variance is a measure of the stability of a sample. Using
these two aspects to prune the low reliable services could
help us make up the defects in existing service selection
approaches. Compared with previous QoS-based service
selection approaches, our main contributions can be
summarized as follows.

Middleware Framework: Aimed at efficient and reliable
service selection in heterogeneous distributes software
systems, a service composition framework is presented with
three distinct components, i.e., Discovery Engine, Selection
Engine, and Composition Engine.

High Reliability. We adopt Entropy and Variance to
compute the uncertainty of QoS. Then the low reliable
services will be pruned, and high reliable service can be
selected by our designed reliability fitness function for
composited services.

Low Computation Time. Because many low reliable
services are filtered, the solution space of service selection
downsize sharply. This is lower computation time in service
selection process than existing techniques.

Extensive Experiments. We have implemented our
approach and experimented with real-world 5825 services
and 10000 synthetic services. Our results show than our
approach is superior to other approaches. We also report
results on the parameter study of our approach.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background of service selection,
including related definitions and related work. Section 3
introduce proposed service composition framework. Section
4 describes our approach in detail including computing QoS
uncertainty, uncertain services filtering, and service
selection process. The evaluation in Section 5 demonstrates
the benefits of our approach. Finally, Section 6 concludes
the paper.

2. BACKGROUND

2.1 Related concepts

In this section, we will explain some related concepts
about service selection and service composition. The
purpose of a composition service is to achieve a particular

function which can satisfy user’s requirements and
preferences. It is obtained by combining a plurality of
service candidates which are selected from each service
class (which have a number of service candidates). We can
understand the concepts of composite service deeply
through the following example. In a composite service

1 2{ , , ... , }nS s s s , any is S and 1 2= { , ,..., }i i i ils s s s

refers to a service class and it contain (1)l l  functionally

equivalent service candidates with different QoS values. The
QoS value on a specific Web service are 1 2{ , ,..., }lq q q .

The QoS affects the performance of a Web service, is
the non-functional attribute of Web Service. A service’s
QoS has many attributes, such as response time, reliability,
throughput, delay, availability and so on. Generally, it can
be divided into two categories: positive QoS attributes and
negative QoS attributes. The positive QoS attributes (e.g.,
reliability, availability) means that the larger the attribute
value is, the better the quality of Web service is. Conversely,
the negative QoS attributes (e.g., response time, delay) is as
low as possible. In this paper, we consider both positive and
negative QoS attributes.

Generally, a service’s QoS contains multiple attributes.
We could get the corresponding attribute value through
quantitative calculation. For example, the service ijs has r

attributes and its attribute vector can be expressed as

1 2{ () , () , ... , () }ij ij ij r ijQs q s q s q s where the value of

()k ijq s (1)k r  represents the k-th attribute value in

service ijs . Similarly, the composite service’s attribute

vector can be expressed as 1 2{ () , () , ... , () }rQS q S q S q S

where the value of ()kq S is aggregated by the -thk attribute

values from all the selected service candidates. Table 1 lists
the QoS aggregation functions of the sequential composition
model. Other models (e.g., parallel, conditional and loops)
can be transformed to the sequential model using techniques
described in existing papers [12].

Table 1. QoS aggregation functions

QoS Attributes QoS aggregated functions

Response time
1

() ()
n

i
i

q S q s


 

Throughput 1() ()n
i iq S min q s

Reputation
1

1
() ()

n

i
i

q S q s
n 

 

Reliability
1

() ()
n

i
i

q S q s




In a Web service composition, generally, each service
candidate contains multiple QoS attributes which leading to
the different of the unit or scope of its QoS attributes. This
is not helpful for service selection. Therefore, the QoS
utility functions are used to solve the global QoS attribute
values of each candidate service. The QoS utility function is
usually employed to map the vector of QoS values ijQs into

a single real value ijUs . Then, we would launch the service

selection by sorting and ranking each candidate of global
QoS aggregated value ijUs . As we all known, in Web

service compositions, users generally expect the lower
negative QoS attributions values and the higher positive
QoS attributions values. So for the negative QoS attributes,
a minimum value should be obtained and for the positive
QoS attributes, a maximum value should be obtained. The
QoS utility function in this paper is similar to [4, 9]. It
scales all attributes value in domain [0, 1] for uniform
computing on multi-dimensional service attributes, then it
adds the user’s requests on each attribute. Here we list the
QoS utility function definition.

Definition 1 (QoS Utility Function): Suppose there are
x negative QoS attributions to be maximized and y

positive QoS attributions to be minimized. The QoS utility
functions for a Web service ij is s and composited service

S is defined as follows:

, ,

1 1, , , ,

() ()
() = . .

max minyx
i ij ij i

ij max min max min
i i i i

Q q s q s Q
U s

Q Q Q Q

   
 

    

 
 

 


 
 

(1)

1 1

()()
() = . .

minmax yx

max min max min

q S QQ q S
U S

Q Q Q Q

  
 

    

 
 




 
 

(2)
with

, ,
1

, ,
1

= = ()

= = ()

ij i

ij i

x
max max max

i i ij
s s

i

y
max max max

i i ij
s s

i

Q Q Q max q s

Q Q Q max q s

   

   

 


 













（ ）

（ ）

 (3)

, ,
1

, ,
1

= = ()

= = ()

ij i

ij i

x
min min min

i i ij
s s

i

y
min min min

i i ij
s s

i

Q Q Q min q s

Q Q Q min q s

   

   

 


 













（ ）

（ ）

 (4)

Where  and  represents user’s preferences, is the

weights for each QoS attributes and satisfy

=1 =1

1 0 , 1
yx





  


        （ ） ; ,
max
i kQ (0 k   or

0 k  ) is the maximum value of the -thk attribute in all

service candidates of the service class is , and similarly

,
min
i kQ is the minimum value in class is ; max

kQ is the

summation of each ,
max
i kQ in the composition service S and

similarly min
kQ is the summation of each ,

min
i kQ in the

composition service S .
In Definition 1, for negative QoS attributes, we compare

the distance , ()max
i k k ijQ q s between the maximum value in a

service class is and the value of a service candidate ijs with

the distance , ,
max min
i k i kQ Q between the maximum and

minimum in a service class is . For positive QoS attributes,

conversely, we compare the distance ,() min
k ij i kq s Q between

the value of a service candidate ijs and the minimum value

in a service class is with the distance , ,
max min
i k i kQ Q between

the maximum and minimum in a service class is . All QoS

attributes are weighted by user’s preferences so that the QoS
utility function does not rely on any attribute, but rely on
user’s preferences. The weight k is a very important factor

which represents the user’s preference to the -thk attribute
in a composite service. It is usually assigned any value

within [0, 1] and all the weight values satisfy
1

1
r

k
k




 .

The larger the numerical value is, the more attention from
users to the requirement of this attribute, and this attribute
will occupy the more important position in the service
selection process. Therefore, we should set the value of k

according to the user’s preference to the -thk attribute. Of
course, when a user does not known how to assign the 
value of each attribute, the users can assign their weight 
on each attribute through linguistic terms, such as very
unimportant, unimportant, medium, important, and very
important. The distribution of specific level is shown in
Table 2 [13]. If the users do not specified the weight  of
each QoS attribute, in this paper, we will allocate an average
 value of each attribute.

Table 2. The weight values

Linguistic terms Weight values
Very unimportant 0.125

Unimportant 0.25

Medium 0.5

Important 0.75

Very important 1

In a Web service selection, in order to obtain the optimal
composite service, we should add the global QoS
constraints to filter Web services that are not satisfied user’s
QoS requirements. This is helpful to shorten the
computation time and improve the efficiency of service
selection. We can obtain different optimal composite
services with the difference constraint sets. For example, for
a given vector of global QoS constrains

1 2{ , , ..., }mC C C C (0)m r  . Each constrain can be

expressed in terms of upper or lower bounds for the
aggregated QoS values. We could take the advantage of
these m constraints to select the optimal composite service.

 In this paper, we consider both the negative attributes
and positive attributes in the service selection process for
composite services.

2.2 Related work

 There are plenty of covert channel approaches in
literature. Here, we will only review some notable work.

Ran [14] proposed a new Web service discovery model
by combining functional with non-functional requests for

service discovery. The model opens up a new wide research
area that select Web services based on QoS. From the
beginning of the research, many researchers have paid more
attention to the QoS-based Web service selection and
composition [5, 6, 15, 16]. For example, Liu et al. [15]
proposed an open, fair and dynamic QoS computation model
for Web services selection, but this model existed a
shortcoming that it only considered the QoS attributes
without user’s requirements and preferences.

 Integer Programming [8, 9, 17, 18] was often used to
solve the selection of the optimal composite service. In [8],
the authors proposed a novel service selection optimization
approach. This approach contained the following three main
steps. First, loops peeling are adopted in the optimization.
Second, if a feasible solution for the web service
composition problem does not exist, negotiating QoS
parameters is performed in order to determine new quality
values for web service invocations. Finally, a new class of
global constraints, which allows the execution of stateful
web service components, is introduced. In [17] , the authors
presented a middleware platform for Web services
composition by solving the max of utility functions over QoS
attributes meanwhile satisfy user’s requirements. They used
Integer Programming to solve the optimal utility values. Our
previous work [18] employed Cloud Model for pruning the
redundant services, then using Mix Integer Programming to
select the optimal services.

Moreover, some researchers [19, 20] considered the
impact of QoS dependencies in service selection processes.
Baraka et al. [19] presented a correlation-aware service
selection approach for handing QoS dependencies among
Web services and improved the composition quality. The
approach first models the quality dependencies among Web
services and then uses correlation-aware search space
reduction techniques to eliminate uninteresting compositions
from the search space before selection. Also, Feng et al. [20]
proposed a novel approach that considered the QoS-aware
service composition problem in the presence of service-
dependent QoS, user-provided topological and QoS
constraints. The approach effectively handles service-
dependent QoS by directly integrating it into the composition
process rather than after the composition and significant
improves the performance on real life scenarios with
complex service and QoS dependencies.

Although the above-mentioned approaches perform well
in service selection process, because they did not consider
the uncertainty of QoS, they are impossible to guarantee the
reliability of the solution. Different from our another
previous work [21], this paper designs a service composition
middleware framework to support service selection in
heterogeneous distributes software systems, and then
propose an efficient and reliable service selection approach
by computing QoS uncertainty. Moreover, this paper focuses
on new and more comparison experiments to evaluate the
proposed approach

3. MIDDLEWARE FRAMEWORK

Aimed at service selection in heterogeneous distributes
software systems, a service composition framework is
presented as shown in Fig. 1. There are three distinct
components in our framework, i.e., Discovery Engine,
Selection Engine, and Composition Engine.

Discovery Engine: its main function is obtaining valid
service lists, user’s QoS constraints and preferences. Service
providers from heterogeneous distributed systems publish
their services in a UDDI [22] (service registry) where they
can be found by users or service requestors based on their
functional and nonfunctional properties. Given an abstract
composition request according a user’s requests, the
Discovery Engine uses UDDI to locate available services
with service providers for each task. UDDI uses syntactic or
semantic functional matching between the tasks and service
descriptions to find a list of candidate services for each task.
QoS constraints and user’s preferences can be obtained from
Users [23].

Selection Engine: it is the core of the middleware
framework. Its function is finding selection results by
aggregated QoS functions. In this engine, Computing QoS
Uncertainty model and Uncertain Services Filtering model
are used to prune unreliable services and reduce the solution
space, respectively. Service Selection model adopts a 0-1
Integer Programming to find and select the optimal services
according user preferences and OoS constraints.

Composition Engine: Having found suitable services,
Composition Engine can bind against that concrete services
and invoke the selected concrete services one by one on the
basis of selection results from Selection Engine.

For easy understanding, Fig. 3 shows a seven-step
process of service selection with service composition
middleware. Then based on the proposed service
composition middleware, we propose an efficient and
reliable service selection approach by computing QoS
uncertainty

Figure 1. The framework for service composition middleware.

Figure 2. Process of service selection.

4. OUR APPROACH

The proposed approach in this paper contains three
phases. The first phase is QoS uncertainty computing, in
which we adopt information theory and probability theory to
transform the QoS values into two qualitative concepts.
They represent the stability of a service, aiming to rank
services. The Second phase is uncertain services filtering, in
which we prune the uncertain service candidates according
to the two qualitative concepts, aiming to reduce the
solution space of service selection. The third phase is
service selection, in which, we design a reliability fitness
function to find the most reliable composite service with
low computation time.

4.1 Computing QoS uncertainty

We first normalize the quantitative QoS values into the
domain [0, 1], which is convenient for data processing and
uniform QoS attribute values. Then we employ information
theory and probability theory to compute the QoS
uncertainty by transforming QoS quantitative values into two
QoS qualitative concepts. Then according to the two
qualitative concepts, a service with consistently good QoS
can be distinguished from other services. For illustration, we
firstly give the following relevant concepts.

1) Data normalizing

Through the normalization process, limiting the values
within a certain range (e.g., [0-1]), is convenient for QoS
utility function. Data normalizing means that the original
QoS values will be scaled proportionally. There are many
ways for normalizing, such as linear conversion, logarithmic
conversion, cotangent conversion, etc. In this paper, we
adopt the linear conversion to normalize the QoS value. The
specific formula is as follows:

() / ()y x Minvalue Maxvalue Minvalue   (5)

Where x and y represents the corresponding values before
and after QoS data conversion, respectively; Maxvalue and
Minvalue represent the maximum and minimum of the
original data, respectively .

2) Entropy

In information theory, Entropy is used to measure the
expectation value of a random variable which shows the
average uncertainty of overall information source (IS). For a
particular IS, the Entropy value is changed with the different
of statistical properties. In general, the greater the uncertainty
of the variable is, the larger the Entropy value is (this means
the greater disorder of its corresponding IS). In this paper,
we consider the real-world QoS historical values for a
service as a discrete IS, and then we employ Entropy to filter
services by the following definition of the Entropy.

Definition 2 (Entropy): Let X be the random variable of
IS and H(X) be the Entropy value of X. {X1, X2,…, Xn } is the
range of X. Then, in this case, the H(X) can be work out by
the following:

2
=1

() () ()
n

i i
i

H X p x log p x  (6)

Where ()ip x represents ix ’s probability and () 0ip x  and

1

() 1
n

i
i

p x


 . Note that the Entropy value () 0H X  .

3) Variance

In probability theory, Variance is used to measure the
deviation between the random variables and its mathematical
Expectation. The larger the Variance value is, the more
dispersed the random variable’s value relative to the
Expectation is, and the greater the disorder degree of the
sample data is. Since the Variance’s characteristics can fully
reflect the stability of the IS, so we could adopt Variance to
filter the uncertain services in composite services. The
following gives the definition of the Variance.

Definition 3 (Variance): Let X be the random variable
of IS. Let EX be the mathematical Expectation of X, and DX
be the Variance of the X. Then, the EX and DX can be work
out by following:

=1

() ()
n

i i
i

E X x p x (7)

2 2() = () (())D X E X E X (8)

Where () () 0i ip x p x （ ） represents ix ’s probability and

1

() 1
n

i
i

p x


 .

Since the Entropy and Variance both fully reflects the
stability of the IS, why do we adopt both and not just adopt
one of them? Considering that the existence of the same two
entropy values or two same variances which represent two
ISs, respectively. In this situation, if we only filter the
uncertain services according to one of them, we will not
obtain the ideal results. For example, there are two random
variables: X1={0.01, 0.01, 0.06, 0.06, 0.09, 0.09} and
X2={0.04, 0.04, 0.05, 0.05, 0.06, 0.06}, respectively,
represent the response times of six same users accessing two
different services (WS1,WS2). According to (6), the Entropy
values can be calculated, but we find that En(X1) = En(X2).
Then we could not prune a service according its Entropy
value. Furthermore, we calculate their Variances Dx(X1),
Dx(X2). Since Dx(X1)>Dx(X2), it indicates that the WS2 is

more stable and reliable than WS1, and then we should prune
WS1. Hence, this example demonstrates intuitively the
benefit of using both.

Currently, Entropy and Variance have been applied to
many fields, such as financial market, risk investment, etc.
They have achieved lots of good results which provide a
basis and reference for our approach. By using the Entropy
and Variance for abandoning uncertain services will help us
select the lowest uncertain services.

4.2 Uncertain services filtering

Through the above QoS uncertainty computing, we could
use the two Entropy En and Variance Dx to filter the
uncertain services. The En will help us to filter the services
coarse-grained. Suppose there are l functionally equivalent
services. The top l1 (l1 < l) smallest value of En will be
selected and the rest will be discarded. We then filter the l1

services by Dx. We will select the top of smallest l2 services
from l1. Finally, we will obtain l2 low uncertain services.

For service filtering, we take three services WS1,WS2 and
WS3 that offer the similar hotel service as an example to
illustrate the different implications. In the example, the
performance of WS1, WS2 and WS3 is recorded by a series of
transaction logs, which helps capture the actual QoS
delivered by each provider in practical application. Because
the dynamic environment in which these service providers
operate causes the uncertainty of their performance, this can
be reflected by the fluctuation among different transactions.
For the easy of illustration, although the actual number of
transactions should be much larger, we consider only 10
transactions with the four services, respectively. In Table III,
it gives these transactions with a focus on the attribute of
response time and each value represents the response time
when a user invokes a service. Then the aggregated QoS
values (S1, S2 and S3) obtained by averaging all transactions
are given in the last row of Table 3.

Table 3. A Set of Service Transactions

WS1 WS2 WS3

ID
Respone
time(ms)

ID
Respone
time(ms)

ID
Respone
time(ms)

S10 12 S20 23 S30 18

S11 31 S21 29 S31 16

S12 15 S22 24 S32 31

S13 32 S23 22 S33 32

S14 14 S24 28 S34 19

S15 32 S25 29 S35 33

S16 31 S26 25 S36 34

S17 36 S27 28 S37 17

S18 34 S28 23 S38 20

S19 13 S29 27 S39 33

S1 24.9 S2 25.8 S3 25.3

From Table 3, the aggregated QoS values of S1 is less
than that of S2 and S3, i.e., S1< S2, S1< S3. In traditional
service selection approach, service S1 frequently is selected
as a service component in service composition because of
24.9<25.8 and 24.9<25.3. However, after analyzing each
transaction of these three services in great depth, we find the

following three important facts that may be ignored by some
existing service selection approaches:

1) In service WS1, five transactions are in interval [31,
35], four transactions are in interval [11, 15] and one
transaction is in interval [36, 40]. In service WS2, five
transactions are in interval [21, 25] and the other five
transactions are in interval [26, 30]. Similarly, in service WS3,
five transactions are in interval [15, 20] and the other five
transactions are in interval [31, 35]. That means although the
average response time of service WS1 is slightly less than that
of WS2 and WS3, the response time of service WS1 is larger
than that service WS2, WS3 in most transactions.

2) By comparing service WS2 with WS3, we could find
the transactions are evenly distributed in two intervals. But
the service WS3 has a larger span distribution than service
WS2, which means service WS2 is more stable than service
WS3.

3) The response time of service WS1 and WS3 is more
volatile than that of service WS2, i.e., service WS1 and WS3
with a large variance on its QoS, but service WS2 with
consistently good QoS.

Hence, according to the three facts, if service WS1 or WS3
is selected as a service component, the actual execution
result of service WS1 or WS3 may deviates from their average
response time, which will result in poor composition service
QoS or service selection failure. It is obvious that service
WS2 is more stable than other two services. So how to
compute the uncertainty of service that is used to distinguish
a service with a consistently good QoS from other services
with large variance on its QoS, is an important issue.

In this study, we adopt uncertain service filtering to
Table III. Then the Entropy and Variance {En, Dx} of
services WS1, WS2 and WS3 can be calculated, i.e., NS1 =
{1.361, 106.25}, NS2 = {1, 6.25} and NS3 = {1, 56.25}. Since
the WS1’s En is higher than WS2 and WS3 (i.e., 1.361>1), the
uncertainty level of service WS1 is smaller than that of
service WS2, WS3. In addition, the WS3’s Dx is higher than
WS2 (i.e., 56.25 > 6.25), so the uncertainty level of service
WS3 is also smaller than that of service WS2. This means that
the QoS of service WS2 is consistently good but service WS1,
WS3 with a large variance on its QoS. Thus, the service WS2
should be selected as a service candidate rather than the other
two services, which is different from some traditional
approaches. Then by setting different threshold parameters of
En and Dx according to different service environment, the
services with a large variance on its QoS and the services
with a consistently good QoS can be distinguished. Then the
latter will be as service candidates prior to the former for
reliable service selection.

By this way, our approach can filter the uncertain
services, thereby reduce the solution space of service
selection and shorten the computation time in service
composition.

4.3 Service Selection

After QoS uncertainty computing and uncertain services
filtering, service candidates with consistently good QoS can
be discovered in each service class. Then, a service selection
solution has to be used to find the most reliable service of

each class with global QoS constraints. In this paper, a 0-1
Integer Programming model is used to solve the optimization
problem of service selection based on the filtered services.
Recently, the Integer Programming has been used to solve
the service composition problem by several researches [8, 9,
17, 18] and achieved good results.

In this paper, we propose a reliability fitness function
definition to reflect the reliability of service selection. The
larger the reliability fitness value is, the more reliable the
solution of service selection is. .

Definition 4 (Reliability Fitness Function): Suppose
there are x negative QoS attributions and y positive QoS
attributions. The reliability fitness function is defined as
follows:

1 1 1 1

1 1

() ()

. .
() ()

n l n l
max min

ij ij ij ijyx
i j i j

max min max min

Q x q s x q s Q

F S
Q Q Q Q

   

 
      

 
 

   

 

   

 
   

 
 （） (9)

Where ijx is a binary decision variable for representing the

service candidate whether is selected; a service candidate ijs

is selected in the optimal composition service if its
corresponding variable x is set to 1 and 0 otherwise;  is the
standard deviation of a sample that consists of all the service
candidates from all service classes and it can reflect the
overall volatility of all service candidates; k (0 k   or

0 k  ) is the standard deviation of a sample that consists

of k-th attribute values for all the service candidates from all
service classes and it can reflect the overall volatility of all
service candidates; ()k ijq s represents the k-th attribute value

in service ijs and maxQ , minQ , maxQ and minQ can be

calculated by formula (4).
In the phase of service selection, we can get the most

reliable composite service that satisfies all global QoS
constraints. So the 0-1 integer programming model can be
formulated as follows:

Max F S（ ） (10)

Subject to
1 1

1

() () ,1

1,1 , {0,1}

n l

k ij ij k
i j

l

ij ij
j

q s x C k m r

x i n x

 




     



    





 (11)

Where r is the number of QoS attributes; m is the number of

QoS constraints; n is the number of service class; kC

represents the k-th global QoS constrains with respect to the
k-th QoS attribute.

By solving (10) and (11), a list of reliable services are
obtained and returned from each class to service broker
providing a composition service for users.

5. EXPERIMENTS

We have implemented our approach and experimented
with a real-world dataset and a synthetic dataset. We
compare our approach with Global approach [8] and Skyline
approach [3] by conducting several groups of experiments.

Moreover, we also studied the parameters of our approach.
The experiments indicate that the solution of our approach is
more reliable than other approaches, and shows that the
computation time of our approach is much shorter than other
approaches.

5.1 Experiment Setup

We conduct experiments using two types of datasets.
The first is a real-world Web service QoS dataset named
WSDream dataset from [24, 25]. WSDream dataset contains
nearly 2 million real-world QoS Web service invocation
records. Values of two QoS attributes (i.e., Response time,
Throughput) are collected by 339 service users on 5825
Web services. It also contains the information of these 5825
Web services and 339 users.

In order to make sure the experiments results of our
approach are not biased on the used WSDream dataset, we
also conduct experiments with a second dataset which is a
randomly generated dataset (named Random dataset) that
contains 10,000 services with two QoS attributes.

We perform several experiments of the QoS-based
service composition problem. Each experiment consists of a
service composition request with n service classes, l service
candidates per class, and m global QoS constraints. By
varying the number of these parameters, we collect the
results of each experiment, where each unique combination
of these three parameters represents one experiment. We
first perform the experiment using (9) to find the optimal
selection that satisfies all global QoS constraints meanwhile
maximizing the reliability fitness value. We record the
required computation time t1 and the obtained reliability
fitness value v1 for each experiment. We then provide the
same experiments on all approaches and record the
computation time t2 and the reliability fitness value v2 for
the same experiment, respectively. Then we verify the
accuracy of the experiment by comparing t1 with t2 and v1
with v2 for each experiment.

In our experiments, the number of QoS attributes r is set
to 2, QoS constraints m is also set to 2, the number of
service candidates per service class varies from 100 to 1000,
and the weight for the two attributes is equally 0.5. For
WSDream dataset, the number of service class n is fixed to
5 and to 10 for the Random dataset. And, the number of
historical transactions is set to 250 for WSDream dataset
and to 500 for the Random dataset. In our approach, we use
En to filter out half of the service candidates in first phase
and then in second phase, use Dx to select 2/5 service
candidates from the selected service candidates in first
phase. Then we will get 1/5 service candidates which are
relative stability and QoS certainty.

All the experiments are performed on the same computer
with Intel(R) Xeon(R) 2.6GHz processor, 32.0GB of RAM,
Windows Server 2008 R2, and Matlab R2013a. All
experiments performed 20 times.

5.2 Reliability Comprations

The reliability fitness function has a theoretical
maximum maxF S（ ）which represents the value when

obtaining the optimal service composition in ideal situation.

The maxF S（ ） is not fixed and varies with the difference of

weight  and standard deviation  . In this paper, we
define the concepts of Reliability as follows:

 /fitness maxReliability F F S （ ） (11)

Where fitnessF S（ ） represents the reliability fitness value

obtained in each experiment; maxF S（ ）as constant is 62.5 for

WSDream dataset and 75 for Random dataset. They are
obtained on basis of analyzing a larger number of
experimental results.

As shown in Fig. 3 and Fig. 4, we compare our approach
with Global approach and Skyline approach in terms of the
Reliability. We could find that the Reliability obtained by
our approach is always larger than obtained by Global
approach and Skyline approach with the increasing number
of service candidates. These experimental results illustrate
that our approach verifies effectively the influence of QoS
uncertainty on the quality of composition service and largely
improves the reliability of service selection. By using En and
Dx to monitor service’s QoS historical transactions, our
approach effectively identify that the large variances services
on its QoS and prune them. Our approach greatly improves
the reliability of service composition.

Figure 3. Reliability with WSDream dataset.

Figure 4. Reliability with WSDream dataset.

5.3 Computation Time Comparisions

In this section, we perform experiments to compare our
approach with Global approach and Skyline approach on the
computation time.

From Fig. 5 and Fig. 6, we could find that the
computation time is growing with the growing of service
candidates, and for any service candidates, the computation
time of our approach is always shortest in all approaches.
The experimental results illustrate that our approach
significantly reduces the time cost of service composition
because of the searching space is reduced in our approach.

Figure 5. Computing time with WSDream dataset.

Figure 6. Computing time with Random dataset.

5.4 Parameters Study

5.4.1 The Studies of The Parameters En and Dx

In this section, we study the two parameters En and Dx.
We fixe one of the two parameters, and then obtain the
Reliability and Computation time with the change of another
one. Fig. 7 and Fig. 8 list the experimental results
(Reliability, Computation time) with the change of Dx. We
fixed the number of service candidates is 500 and the En is
0.5 which represents selecting half of service candidates by
En. And, the Dx is varies from 0.05 to 0.5 which represents
the proportion of final selected service candidates.

Figure 7. Reliability with Dx.

Figure 8. Computation time with Dx.

Fig. 9 and Fig. 10 list the experimental results with the
change of En. We also fixe the number of service candidates
is 500 and the Dx is 0.2. And, the En is varies from 0.55 to 1
which represents the proportion of selected candidate
services by En. These experiments better describe and enrich
our approach and let the readers deeply understand the
benefits of our approach.

Figure 9. Reliability with En.

Figure 10. Computation time with En.

5.4.2 The Study of The Parameter

In this section, we also verify the weight  for the
influence of reliable composition service. The weight 
represents the user’s requests for each QoS attribute and it is
very important for service composition.

From Fig. 11-14 list the results in both datasets. Each
value is the average of 10 results which represent the
number of service candidates varies from 100 to 1000. And
the weights of Response time is varies from 0 to 1,
corresponding, the weights of Throughput is varies from 1
to 0. From the results, we could find that no matter how the
 is allocated, and the results obtained by our approach are
better than MIP, i.e. the average of reliability fitness value
obtained by our approach is larger than MIP and the average
of computation time is smaller than MIP.

All above experimental results demonstrate more fully
that our approach greatly improves the reliability of service
composition and shortens the computation time of service
composition. Our approach can select the optimal
composited service spending less time and obtaining greater
reliability.

Figure 11. Reliability with  based on WSDream.

Figure 12. Reliability with  based on Random dataset.

Figure 13. Computation time with  based on WSDream.

Figure 14. Computation time with  based on Random dataset.

6. CONCLUSIONS

In this paper, based on a service composition framework,
we presented an efficient and reliable service selection
approach. Our approach uses the two concepts Entropy and
Variance to compute the uncertainty of QoS and then filter
these services with high uncertainty. Finally, we design a
reliability fitness function to select the most reliable

composite services by 0-1 Integer Programming. We
evaluate our approach using both real-world and randomly
generated service datasets. The result shows that our
approach obtains more reliable solution with lower
computation time than other approaches. This means that
our approach can perform service selection on basis of
user’s requests more efficiently and effectively.

In our future work, we will strengthen our approach and
continue to research more efficient service selection
approaches. We aim to help users find the optimal
composite service according to their QoS requirements and
user preferences in the future.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 61202435 and
61272521 and the Natural Science Foundation of Beijing
under Grant No.4132048.

REFERENCES

[1] R. Mietzner, C. Fehling, D. Karastoyanova, F. Leymann, Combining
horizontal and vertical composition of services, in: IEEE International
Conference on Service-Oriented Computing and Applications (SOCA
2010), 2010, pp. 1-8.

[2] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, A framework for
QoS-aware binding and re-binding of composite web services,
Journal of Systems and Software, 81 (2008) 1754-1769.

[3] M. Alrifai, D. Skoutas, T. Risse, Selecting skyline services for QoS-
based web service composition, in: the 19th international conference
on World Wide Web (WWW 2010), 2010, pp. 11-20.

[4] M. Alrifai, T. Risse, Combining global optimization with local
selection for efficient QoS-aware service composition, in: the 18th
international conference on World Wide Web (WWW2009), 2009, pp.
881-890.

[5] G. Canfora, M.D. Penta, R. Esposito, M.L. Villani, An approach for
QoS-aware service composition based on genetic algorithms, in: the
7th annual conference on Genetic and evolutionary computation
(GECCO 2005), 2005, pp. 1069-1075.

[6] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, QoS-aware
replanning of composite Web services, in: IEEE International
Conference o Web Services (ICWS 2005), 2005, pp. 121-129.

[7] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, C.-H. Chen, Dynamic Web
service selection for reliable Web service composition, IEEE
Transactions on Services Computing, 1 (2008) 104-116.

[8] D. Ardagna, B. Pernici, Adaptive service composition in flexible
processes, IEEE Transactions on Software Engineering, 33 (2007)
369-384.

[9] T. Yu, Y. Zhang, K.-J. Lin, Efficient algorithms for Web services
selection with end-to-end QoS constraints, ACM Transactions on the
Web, 1 (2007) 1-26.

[10] Y. Qi, A. Bouguettaya, Computing Service Skyline from Uncertain
QoWS, IEEE Transactions on Services Computing, 3 (2010) 16-29.

[11] K.S. Candan, W.-S. Li, T. Phan, M. Zhou, Frontiers in information
and software as services, in: the 25th IEEE International Conference
on Data Engineering (ICDE 2009), 2009, pp. 1761-1768.

[12] J. Cardoso, A. Sheth, J. Miller, J. Arnold, K. Kochut, Quality of
service for workflows and web service processes, Web Semantics, 1
(2004) 281-308.

[13] S.S. Yau, Y. Yin, QoS-Based Service Ranking and Selection for
Service-Based Systems, in: IEEE International Conference on
Services Computing (SCC 2011), 2011, pp. 56-63.

[14] S. Ran, A model for web services discovery with QoS,
SIGecom Exchanges, 4 (2003) 1-10.

[15] Y. Liu, A.H. Ngu, L.Z. Zeng, QoS computation and policing
dynamic web service selection, in: the 13th international World Wide
Web (WWW 2004), 2004, pp. 66-73.

[16] K. Guosheng, L. Jianxun, T. Mingdong, L. Xiaoqing, K.K. Fletcher,
Web Service Selection for Resolving Conflicting Service Requests, in:
IEEE International Conference on Web Services (ICWS
pp. 387-394.

[17] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H.
Chang, QoS-Aware Middleware for Web Services Composition,
IEEE Transactions on Software Engineering, 30 (2004) 311

[18] W. Shangguang, Z. Zheng, S. Qibo, Z. Hua, Y. Fangchun, Cloud
model for service selection, in: 30th IEEE Conference on Computer
Communications Workshops on Cloud Computing (INFOCOM
WKSHPS), a, 2011, pp. 666-671.

[19] L. Barakat, S. Miles, M. Luck, Efficient Correlation
Selection, in: IEEE 19th International Conference on Web Services
(ICWS 2012), 2012, pp. 1-8.

[20] F. Yuzhang, N. Le Duy, R. Kanagasabai, Dynamic Service
Composition with Service-Dependent QoS Attributes, in: IEEE 20th
International Conference on Web Services (ICWS
10-17.

[21] L. Sun, S. Wang, J. Li, Q. Sun, F. Yang, QoS Uncertainty Filtering
for Fast and Reliable Web Service Selection, in: IEEE International
Conference on Web Services (ICWS 2014), 2014, pp. 550

[22] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service
Oriented Computing: State of the Art and Research Challenges,
Computer, 40 (2007) 38-45.

[23] F. Li, F. Yang, K. Shuang, S. Su, A Policy
Framework for Monitoring Quality of Web Services, in: IEEE
International Conference on Web Services
708-715.

[24] Z. Zheng, Y. Zhang, M.R. Lyu, Distributed QoS evaluation for real
world Web services, in: IEEE 8th International Conference on Web
Services (ICWS 2010), 2010, pp. 83-90.

[25] Z. Yilei, Z. Zibin, M.R. Lyu, Exploring Latent Features for Memory
Based QoS Prediction in Cloud Computing, in:
Symposium on Reliable Distributed Systems (SRDS
1-10.

S. Ran, A model for web services discovery with QoS,

Y. Liu, A.H. Ngu, L.Z. Zeng, QoS computation and policing in
dynamic web service selection, in: the 13th international World Wide

K. Guosheng, L. Jianxun, T. Mingdong, L. Xiaoqing, K.K. Fletcher,
Web Service Selection for Resolving Conflicting Service Requests, in:

onal Conference on Web Services (ICWS 2011), 2011,

L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H.
Aware Middleware for Web Services Composition,

IEEE Transactions on Software Engineering, 30 (2004) 311-327.

guang, Z. Zheng, S. Qibo, Z. Hua, Y. Fangchun, Cloud
model for service selection, in: 30th IEEE Conference on Computer
Communications Workshops on Cloud Computing (INFOCOM

L. Barakat, S. Miles, M. Luck, Efficient Correlation-Aware Service
Selection, in: IEEE 19th International Conference on Web Services

F. Yuzhang, N. Le Duy, R. Kanagasabai, Dynamic Service
Dependent QoS Attributes, in: IEEE 20th

Web Services (ICWS 2013), 2013, pp.

L. Sun, S. Wang, J. Li, Q. Sun, F. Yang, QoS Uncertainty Filtering
for Fast and Reliable Web Service Selection, in: IEEE International

), 2014, pp. 550-557.

Traverso, S. Dustdar, F. Leymann, Service-
Oriented Computing: State of the Art and Research Challenges,

F. Li, F. Yang, K. Shuang, S. Su, A Policy-Driven Distributed
Framework for Monitoring Quality of Web Services, in: IEEE

 (ICWS 2008), 2008, pp.

Z. Zheng, Y. Zhang, M.R. Lyu, Distributed QoS evaluation for real-
world Web services, in: IEEE 8th International Conference on Web

Zibin, M.R. Lyu, Exploring Latent Features for Memory-
Based QoS Prediction in Cloud Computing, in: the 30th IEEE
Symposium on Reliable Distributed Systems (SRDS 2011), 2011, pp.

Shangguang Wang
at the State Key Laboratory of Networking and
Switching Technology, Beijing University of
Posts and Telecommunications. He received
his Ph.D. degree in computer science at
Beijing University of Posts and
Telecommunications of China in 2011. His
PhD thesis was awarded as an outstanding
doctoral dissertation by BUPT in 2012. His
research interests include Service Computing,

Mobile Services, and QoS Management.

Lin Huang
computer science and technology from the
Institute of Network Technology, Beijing
University of Posts and Telecommunications,
in 2012. Currently, she is a Ph.D. candidate at
the State Key Laboratory of Networking and
Switching
Posts and Telecommunications. Her research
interests include

Web service selection.

Lei Sun received the BEng from
University. He is currently
Beijing University of
Telecommunications. His
include service computing
computing.

Ching-Hsien Hsu
department of computer science and
information engineering at Chung Hua
University, Taiwan. His research includes high
performance computing, cloud computing,
parallel and distributed systems, and
ubiquitous/pervasive computing and
intelligence
than 100 conferences and workshops as
various chairs and more than 200

conferences/workshops as a program committee member. He is the
editor-in-chief of an international journal on Grid and High
Performance Computing and has served on the
approximately 20 international journals.

Fangchun Yang
in communication and electronic systems
from Beijing University of Posts and
Telecommunication in 1990. He is currently
a professo
and Telecommunication, China. He has
published 6 books and more than 80 papers.
His current research interests include
network intelligence, services computing,
communications software, soft switching
technology, and ne

fellow of the IET.

Shangguang Wang is an associate professor
at the State Key Laboratory of Networking and
Switching Technology, Beijing University of
Posts and Telecommunications. He received
his Ph.D. degree in computer science at
Beijing University of Posts and
Telecommunications of China in 2011. His

D thesis was awarded as an outstanding
doctoral dissertation by BUPT in 2012. His
research interests include Service Computing,

Services, and QoS Management.

Lin Huang received the M.E. degree in
computer science and technology from the
Institute of Network Technology, Beijing
University of Posts and Telecommunications,
in 2012. Currently, she is a Ph.D. candidate at
the State Key Laboratory of Networking and
Switching Technology, Beijing University of
Posts and Telecommunications. Her research
interests include Reputation measurement,

received the BEng from Qingdao
University. He is currently Master student at the
Beijing University of Posts and

ommunications. His research interests
service computing and distributed

Hsien Hsu is a professor in the
department of computer science and
information engineering at Chung Hua
University, Taiwan. His research includes high
performance computing, cloud computing,
parallel and distributed systems, and
ubiquitous/pervasive computing and
ntelligence. He has been involved in more
than 100 conferences and workshops as
various chairs and more than 200

conferences/workshops as a program committee member. He is the
international journal on Grid and High

ng and has served on the editorial board for
approximately 20 international journals.

Fangchun Yang received his PhD degree
in communication and electronic systems
from Beijing University of Posts and
Telecommunication in 1990. He is currently
a professor at the Beijing University of Posts
and Telecommunication, China. He has
published 6 books and more than 80 papers.
His current research interests include
network intelligence, services computing,
communications software, soft switching
technology, and network security. He is a

