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Abstract—Mobile edge computing is a promising computing
paradigm with the advantages of reduced delay and relieved
outsourcing traffic to the core network. In mobile edge com-
puting, reducing the computation offloading cost of mobile
users and maintaining fresh information at edge nodes are two
critical while conflicted objectives, as both consume the limited
wireless bandwidth of edge nodes. Although extensive efforts have
been devoted to optimizing computation offloading decisions and
some works have investigated freshness-aware channel allocation
issues recently, no prior works have considered the above
conflict. This paper is the first work to jointly optimize the
channel allocation and computation offloading decisions, aiming
at reducing the computation offloading cost within freshness
requirements of sensors. We analyze the recursiveness of AoI
in analogy to the evolvement of a queue and formulate the
problem as a nonlinear integer dynamic optimization problem.
To overcome the challenges of AoI-computation cost tradeof-
f, AoI time dependency and high complexity caused by the
heterogeneity of users, we propose an algorithm to solve the
problem with reduced computation complexity. Specifically, we
first transform the original problem into a static optimization
problem in each time slot (which is NP-hard) based on Lyapunov
optimization techniques. To reduce the computation complexity,
we exploit the finite improvement property of potential games
and further enforce centralized control to reduce the number of
improvement iterations. Simulations have been conducted and
the results demonstrate that the proposed algorithm shows good
effectiveness and scalability.

Index Terms—information update, channel allocation, compu-
tation offloading, edge computing

I. INTRODUCTION

W ITH the widespread deployment of IoT sensors and
the proliferation of mobile devices, tremendous mobile

data are being produced and a large amount of delay-sensitive
and computation-intensive mobile tasks need to be processed.
Mobile edge computing is considered as a promising com-
puting paradigm by provisioning storage and computation
resources (forming edge nodes) within the wireless access
network [1], [2], [3]. Through caching mobile data of sensors
and processing mobile tasks of mobile devices at edge nodes,
mobile edge computing can on one hand relieve the traffic
burden of the core network, and on the other hand, can
effectively reduce the processing cost (in terms of delay and
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Fig. 1. Computation offloading and channel allocation in mobile edge
computing.

energy consumption) of mobile tasks. Due to the above ad-
vantages, mobile edge computing has attracted huge attention
of researchers since its emergence.

As mobile edge computing can provision sufficient re-
sources in proximity to mobile devices, offloading mobile
tasks to edge nodes is potential to reduce the processing
delay and energy consumption of mobile users, which is
inherently advantageous for the fast-growing delay-sensitive
and computation-intensive mobile tasks, such as AR/VR and
object recognition. Thus, extensive research works have in-
vestigated computation offloading issues, aiming at reducing
computation offloading cost in terms of delay and energy
consumption [18]-[29]. In addition to the reduced computation
offloading cost, some typical delay-sensitive and freshness-
aware applications of mobile edge computing, such as real-
world map navigation and obstacle avoidance for auto driving,
also require fresh information maintained at edge nodes when
processing the computation tasks. Therefore, maintaining fresh
information at edge nodes is another vital objective for edge
administrators to provision services for these types of applica-
tions. Age of information (AoI) has been proposed to depict
the freshness of information and is defined as the time elapsed
since its generation [4], [5]. Minimizing AoI at edge nodes
requires frequent data update between sensors and edge nodes,
occupying the limited wireless bandwidth of edge nodes. It
is intuitive that there exists a conflict between maintaining
fresh information at edge nodes and reducing the computation
offloading cost of mobile users, as both consume the limited
uplink wireless resources of edge nodes.

Although extensive works have been devoted to computation
offloading and there have been some works investigating
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freshness-aware channel allocation recently, there are no prior
works jointly optimizing the computation offloading and chan-
nel allocation decisions. Solving this problem is challenging.
First, there exists a tradeoff between keeping information
fresh and reducing computation offloading cost. To keep the
information at the edge node fresh, mobile data of sensors
should be updated frequently and more resources should
be reserved for the information update channel. However,
as the total bandwidth of the edge node is limited, more
resources reserved for the information update channel means
less resources left for computation offloading, leading to high
computation offloading cost. Second, the future AoI is highly
dependent on the state and channel allocation decision of
the current time slot. Maintaining the long-term average AoI
low requires to consider this time dependency when making
the channel allocation decision for each time slot. Third,
mobile users are heterogeneous since they have differentiated
mobile computation capacities and diverse transmission power.
To efficiently reduce the overall computation offloading cost
of mobile users, the computation offloading decisions need
to be well coordinated, which can cause high computation
complexity.

In this paper, we investigate the freshness-aware information
update and computation offloading problem in mobile edge
computing. To our best knowledge, this is the first work to
jointly optimize computation offloading and channel allocation
decisions considering the tradeoff. We formulate this problem
as a long-term dynamic optimization problem, aiming at
minimizing the computation offloading cost of mobile users
while ensuring the constraints of sensors. To analyze the
constraints of sensors in depth, we combine the recursiveness
of AoI with the evolvement of a queue and transform the
throughput constraint by introducing virtual queues. Based on
Lyapunov optimization techniques, the long-term information
update and computation offloading strategy can be optimized
by solving a static optimization problem in each time slot [6].
As the static optimization problem is proved to be NP-hard
[7], we seek to reduce the complexity by exploiting the finite
improvement property of potential games [8] and enforcing
central control at the cost of information collection overhead.
The contributions of this paper are summarized as follows.

• We are the first to jointly optimize the computation of-
floading and channel allocation decisions by considering
the tradeoff between keeping fresh information at the
edge node and reducing the computation offloading cost
of mobile users. We analyze the recursive property of AoI
in analogy to the evolvement of a queue and the transform
the throughput constraints by introducing virtual queues.

• We formulate the problem as a nonlinear integer dynam-
ic optimization problem and transform it into a static
optimization problem in each time slot using Lyapunov
optimization techniques. To solve the static optimization
problem with reduced complexity, we exploit the finite
improvement property of potential games and further
enforce centralized control to reduce the number of
improvement iterations.

• Extensive simulation are conducted and the results val-

idate the effectiveness and scalability of the proposed
algorithm.

The rest of the paper is organized as follows. Sec. II reviews
the related work. In Sec. III, we present the system model and
in Sec. IV, the problem formulation and algorithm design are
provided. Sec. V illustrates the simulation results and Sec. VI
concludes the paper.

II. RELATED WORK

AoI has been proposed to depict the freshness of infor-
mation, which has been considered as a critical performance
metrics in research areas such as internet of things [9], [10],
wireless network [11], [12], [13], [14], [15], [16], edge caching
[4], [5], [17], and vehicular network [18]. Corneo et al in
[10] have proposed an AoI-aware scheduling policy for sensor
data updates in cloud caches, which performs well even with
significant delay variations. Qian et al in [11] have studied AoI
in muti-channel wireless systems. A policy-dependent lower
bound has been presented and scheduling policies have been
designed to provision good AoI performance. Champati et al
in [12] have sought to derive the minimum AoI in a queue
with single source and single server given the distribution of
service time. Lou et al in [13] have explored the relationship
between AoI and throughput of multi-hop wireless networks.
Zhang et al in [17] have presented a threshold-based cache
updating policy and have derived closed forms of delay and
AoI approximately, demonstrating the tradeoff relationship
between the two performance metrics. Chen et al in [18] have
proposed an algorithm to solve the AoI-aware radio resource
management problem in the scenario with Manhattan grid
vehicle-to-vehicle network.

The above works are all devoted to information update
issues. In practical scenarios, in addition to maintaining the
cached information fresh, edge nodes also need to provision
low-delay computation offloading services for mobile users.
Both information updating and computation offloading pro-
cesses consume considerable bandwidth, while the overall
bandwidth of an edge node is limited. Thus, the computation
offloading issues should also be taken into consideration.

Extensive works have investigated computation offloading
problems, seeking to tradeoff the conflicts between sufficient
computation capacities and additional wireless transmission
requests when offloading. The works on computation offload-
ing can be divided into centralized schemes and decentralized
schemes with respect to the manners in which the computation
offloading decisions are made. Centralized schemes have made
computation offloading decisions for multiple mobile users
[19], [20], [21], [22], [23]. Decentralized schemes have also
been studied to make computation offloading decisions for
the scenario with a single user [24], [25], [26], [27] and the
scenario with multiple users [7], [28], [29], [30]. It has been
proved that the computation offloading problem is NP-hard
when making computation offloading decisions for multiple
users in a centralized manner [7]. Game theory has been
introduced to characterize the selfish property of users when
making computation offloading decisions for multiple users.
Chen et al in [7], [28] have first presented potential game
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based computation offloading strategies for mobile users in
the scenario with a single edge node and multiple edge nodes,
respectively. Li et al in [29] have studied decentralized task
offloading strategies for applications with statistical QoS guar-
antee. Zheng et al [30] have solved the computation offloading
problem with multiple users under dynamic environment.

Most of the above works on computation offloading mainly
focus on improving users’ quality of experience with respect to
processing delay and energy consumption. However, for appli-
cations requiring fresh data, keeping fresh information at the
edge requires frequent information update from sensors, which
consumes additional wireless bandwidth and thus degrades
the user quality of experience during computation offloading.
Therefore, information update and computation offloading
should be jointly optimized to improve user experience while
ensuring freshness of information at the edge node.

III. SYSTEM MODEL

We consider the scenario as shown in Fig. 1. There are a
set of N = {1, 2, ..., N} mobile users with delay-sensitive and
freshness-aware computation tasks to be processed. Processing
these tasks needs fresh information maintained at edge nodes,
which requires a set of M = {1, 2, ...,M} sensors to update
the fetched data frequently. All the sensors and mobile users
can be connected to a base station (i.e., edge node) which pro-
vides wireless coverage, storage and computation resources.
Let B represent the overall uplink bandwidth allocated for
this type of application. We consider that when there exists
one sensor requiring to update its data, the information update
channel with bandwidth BU is reserved for information up-
date. In this case, the computation offloading channel has the
bandwidth BO = B −BU; Otherwise, BO = B.

We consider a set of T = {1, 2, ..., T} time slots. In each
time slot, no more than one sensor updates its data via the
information update channel. Denote by ŝ(t) = (sm(t))Mm=1

the channel allocation decision of sensors in the tth (t ∈ T)
time slot. Specifically, sm(t) = 1 if the information update
channel is allocated to sensor m at the tth time slot. Otherwise,
sm(t) = 0. When allocating the information update channel
to sensors, the interference constraint should be ensured, i.e.,

M∑
m=1

sm(t) ≤ 1. (1)

When the information update channel is allocated to sensor
m, it generates fresh data and sends to the edge node with
success probability of pm. Let Ωm(t) be the variable indicating
whether the mobile data of sensor m is successfully updated.
For each sensor m, there is

E{Ωm(t)} = pmE{sm(t)}. (2)

Note that when no sensors update their mobile data (i.e.,
sm(t) = 0, ∀m ∈ M), all the wireless resources are dedicated
to offloading computation tasks, i.e.,

BO(ŝ(t)) =


B

M∑
m=1

sm(t) = 0

B −BU
M∑

m=1

sm(t) = 1

(3)

Thus, the channel allocation decision ŝ(t) affects the compu-
tation offloading cost of mobile users through the bandwidth
as in Eq. (3). In the computation offloading channel, mobile
users with computation tasks to offload share the computation
offloading channel based on Shannon’s theorem. As mobile
users share the limited wireless bandwidth of the computation
offloading channel, each mobile user needs to decide either
to process the computation tasks on its own mobile device
or to offload to the edge node according to its own interest.
Let x̂(t) = (xn(t))

N
n=1 represent the offloading decision of

mobile user n at the tth time slot: xn(t) = 1, if mobile
user n decides to offload the computation tasks to the edge
node, otherwise, xn(t) = 0. We consider that when processing
mobile tasks locally on mobile devices, the information at
these mobile devices can be updated timely with the edge
node, as updating information of mobile devices consumes
the downlink resources of the edge node, which usually has
much higher bandwidth than the uplink.

A. Performance Metrics of Sensors

We use AoI to depict the freshness of mobile data received
from sensors. Denote by Am(t) the AoI of sensor m in the tth
time slot. In the tth time slot , when the information update
channel is allocated to sensor m and the generated data is
transmitted successfully to the edge node, the AoI of sensor
m in the tth time slot is reduced to 1. If the edge node cannot
receive the fresh data from sensor m, the AoI increases by 1
over the last time slot. By summarizing the above results, the
AoI is recursively updated as follows,

Am(t+ 1) = Am(t) + 1− Ωm(t)Am(t). (4)

As the frequency that each sensor successfully transmits
the fresh information to the edge node is important for sensor
networks, the successful transmission frequency of each sensor
(i.e., throughput) should be lower-bounded. Thus, for each
sensor m ∈ M, there is

lim
T→∞

1

T

T∑
t=1

Ωm(t) ≥ φm. (5)

Here, φm is the lower bound of sensor m.

B. Interests of Mobile Users

Mobile users pursue their own interests when making com-
putation offloading decisions. In this paper, we take processing
delay and energy consumption of mobile tasks as the metrics
of user interests. Denote by Gn , ⟨αn, βn⟩ the mobile task of
user n to be processed, where αn is the computation require-
ment of the task (in CPU cycles) and βn is the transmitted
data volume when offloading the task.

When processing the mobile task of user n (n ∈ N) locally
at the mobile device, i.e., xn(t) = 0, the processing delay is

Dlocal
n (t) =

αn

fn
. (6)

Here, fn is the local computation capacity of mobile user n.
The energy consumption of local processing is

Elocal
n (t) = Pn ·Dlocal

n , (7)
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where Pn is the processing power at mobile device of user n.
When offloading the mobile task of user n (n ∈ N) to the

edge node, i.e., xn(t) = 1, the processing delay consists of
transmission delay in the wireless network and computation
delay at the edge node. As users offloading tasks to the
edge node share the computation offloading channel based on
Shannon’s theorem, the transmission rate of mobile user n is
given as

rn(t) =

BO(ŝ(t)) · log2(1 +
P trans

n gn
wn+

∑
i∈{ṅ|xṅ(t)=1&ṅ̸=n}

P trans
i gi

). (8)

Here, P trans
n is the transmission power of user n, gn is the

channel gain, and wn is the background interference irrelevant
to the offloaded tasks. Thus, the transmission delay is

Dtrans
n (t) =

βn

rn
. (9)

The computation delay at the edge node is

Dcomp
n (t) =

αn

f edge
n

, (10)

where f edge
n is the edge capacity allocated to mobile user n.

Therefore, the processing delay of user n is given as

Dedge
n (t) = Dtrans

n +Dcomp
n . (11)

The energy consumption when offloading to the edge node
can be computed as

Eedge
n (t) = P trans

n ·Dtrans
n + Etail

n , (12)

where Etail
n represents the energy consumed to maintain the

wireless interface on and to scan wireless signals [31].

C. Problem Formulation

For each edge node, the sensors and mobile users compete
for the communication resources of the base station to update
the information and offload computation tasks, respectively.
For the sensors, the objective is to maintain the data at the edge
node fresh. For the mobile users, the objective is to optimize
the cost with respect to the delay and energy consumption
when processing computation tasks, i.e.,

min
T→∞

1

T

T∑
t=1

N∑
n=1

Cn(t), (13)

Here, Cn(t) is represented by a weighted sum of processing
delay and energy consumption,

Cn(t) =

{
Dlocal

n (t) + γn ∗ Elocal
n (t), xn(t) = 0

Dedge
n (t) + γn ∗ Eedge

n (t), xn(t) = 1
(14)

where γn is the weight parameter specified by mobile user n.
This paper jointly optimizes the channel allocation decisions
ŝ(t) for sensors and computation offloading decisions x̂(t)
for mobile users, such that the computation offloading cost
of mobile users is optimized while ensuring the freshness

requirement of sensors. Thus, the problem formulation is as
follows,

P1 min lim
T→∞

1

T

T∑
t=1

N∑
n=1

Cn(t),

s.t. C1 lim
T→∞

E{Am(T )}
T

= 0, ∀m ∈ M

C2 lim
T→∞

1

T

T∑
t=1

Ωm(t) ≥ φm. ∀m ∈ M

(15)

The objective is to minimize long-term average computation
offloading cost of mobile users. C1 constrains the freshness
requirements of sensors. C2 enforces the throughput of sensors
lower-bounded.

IV. PROBLEM ANALYSIS AND ALGORITHM DESIGN

In this section, we analyze problem P1 and design an
algorithm to solve this problem based on Lyapunov techniques.

A. Problem Analysis

In problem P1, the objective is to minimize the long-
term average computation offloading cost of mobile users.
Remember that when no sensors update the data in one
time slot, the wireless resources are dedicated to offloading
computation tasks for mobile users, as in Eq. (3). Thus,
both the channel allocation decision ŝ(t) of sensors and the
computation offloading decisions x̂(t) of mobile users have

an effect on the interests of mobile users, i.e.,
N∑

n=1
Cn(t).

When the computation offloading channel has more wireless
resources (i.e., no sensors update the data), the offloading
costs of mobile users decrease and they are more likely to
offload the computation tasks. The constraint C1 represents the
freshness requirement of sensors. According to the evolvement
property of Am(t) in Eq. (4), the AoI Am(t) of the current
time slot is determined by the AoI Am(t−1) and the channel
allocation decision of the last time slot ŝ(t − 1) (as in Eq.
(4)). The channel allocation decision of the current time slot
ŝ(t) has an influence on the time-average throughput of the
future. Therefore, problem P1 is a nonlinear integer dynamic
optimization problem.

Define the virtual queue Qm(t) as

Qm(t+ 1) = max{Qm(t) + φm − Ωm(t), 0}. (16)

From the above definition, the virtual queue Qm(t) represents
the accumulative throughput debt of sensor m (m ∈ M) across
t time slots. Here, Qm(t) is introduced because ensuring
constraint C2 does not necessarily mean that the throughput of
each time slot should be larger than the threshold strictly. We
just need to empower the sensor that has larger accumulated
throughput debt Qm(t) with high priority to update its data.

Let Π(t) = (Am(t), Qm(t))Mm=1 denote the system state at
the beginning of time slot t. In problem P1, the channel alloca-
tion decision ŝ(t) and system state Π(t) jointly determine the
AoI and the accumulated throughput debt of the (t+1)th time
slot. That means that ŝ(t) and Π(t) have an effect on the future
channel allocation decision to ensure the long-term average
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AoI and throughput constraints in P1. Thus, problem P1 is a
dynamic optimization problem over ŝ(t). By summarizing the
above analysis, problem P1 is a dynamic optimization problem
over ŝ(t). When ŝ(t) (t ∈ T) is given, problem P1 is reduced
to a static optimization problem over x̂(t) in each time slot.
It has been proved that even the reduced static optimization
problem over x̂(t) is a NP-hard problem [7]. An algorithm
with reduced computation complexity is required to solve P1.

B. Algorithm Design

In this subsection, we design an algorithm to solve P1
based on the above analysis. We first decompose the long-term
dynamic optimization problem P1 into a static optimization
problem over ŝ(t) in each time slot using Lyapunov opti-
mization techniques. Then, we solve the static optimization
problem in each time slot to jointly determine the channel
allocation decision ŝ(t) (m ∈ M) and the computation
offloading decision x̂(t) (n ∈ N).

1) Problem Decomposition: The evolvement of Am(t) is
given as Eq. (4), and Am(t) can be seen as the backlog of
a queue. In each time slot t, the arrival rate of the queue
am(t) = 1, and the serving rate bm(t) = Am(t)Ωm(t). Thus,
ensuring the constraint C1 is equivalent to enforcing the mean
rate stability of the queue.

From the definition of the virtual queue Qm(t) in Eq. (16),
Qm(t) has the following property.

Theorem 1. Enforcing the stability of Qm(t) can ensure the
throughput constraint of sensor m in problem P1

Proof. Please refer to Appendix A.

With Theorem 1 and the analysis on Am(t), it can be
concluded that solving problem P1 is equivalent to optimizing
computation cost of mobile users while ensuring the stability
of Qm(t) and Am(t), which can be solved by using Lyapunov
optimization techniques.

Define the Lyapunov function L(t) as

L(t) =
1

2

M∑
m=1

[Qm(t)]
2
+

1

2

M∑
m=1

[Am(t)]2. (17)

From the definition of L(t), it is indicated that when L(t)
is small, both the accumulated throughput debt Qm(t) and
information age Am(t) of all sensors are low. Thus, the
throughput constraint of problem P1 can be ensured and the
AoI of sensors can be improved by keeping L(t) small.

Define the Lyapunov drift ∆(t) as

∆(t) = E{L(t+ 1)− L(t)|Π(t)} (18)

We seek to keep L(t) small by minimizing the Lyapunov drift
∆(t) in each time slot t. From the definition of Lyapunov
function L(t), the Lyapunov drift ∆(t) is given as:

∆(t) = E{L(t+ 1)− L(t)|Π(t)}

=
1

2

M∑
m=1

E{[Qm(t+1)]
2 − [Qm(t)]

2|Π(t)}

+
1

2

M∑
m=1

E{[Am(t+1)]
2 − [Am(t)]

2|Π(t)}

(19)

From the recursive property of Qm(t) in Eq. (16), it can be
derived that

E{[Qm(t+1)]2 − [Qm(t)]2|Π(t)}
= E{[max{Qm(t) + φm − Ωm(t), 0}]2 − [Qm(t)]2|Π(t)}
≤ E{[Qm(t) + φm − Ωm(t)]2 − [Qm(t)]2|Π(t)}
= E{ − 2Qm(t)Ωm(t) + 2φmQm(t) + [φm − Ωm(t)]2|Π(t)}
(a)

≤ −2Qm(t)pmE{sm(t)|Π(t)}+2φmQm(t) + 1.
(20)

Here, (a) is derived based on Eq. (2), and [φm − Ωm(t)]2 ≤ 1.
From the recursive property of Am(t) in Eq. (4), it can be

derived that

E{[Am(t+1)]2 − [Am(t)]2|Π(t)}
= E{[Am(t+1)]2 − [Am(t)]2|Ωm(t) = 1}Pro{Ωm(t) = 1|Π(t)}
+ E{[Am(t+1)]2 − [Am(t)]2|Ωm(t) = 0}Pro{Ωm(t) = 0|Π(t)}
(b)
={1− [Am(t)]2}pmE{sm(t)|Π(t)}
+{[Am(t) + 1]2 − [Am(t)]2}{1− pmE{sm(t)|Π(t)}}
= −Am(t)[Am(t) + 2]pmE{sm(t)|Π(t)}+ [2Am(t) + 1].

(21)
Here, Pro{·} represents the probability of the event. (b) is
derived as Pro{Ωm(t) = 1|Π(t)} = E{Ωm(t)|Π(t)}, and
E{Ωm} is given as Eq. (2).

Substitute Eq. (20) and Eq. (21) into Eq. (19), and the
Lyapunov drift can be given as

∆(t) ≤
M∑

m=1

−[Qm(t) +
1

2
Am(t)(Am(t) + 2)]pmE{sm(t)|Π(t)}

+
M∑

m=1

[φmQm(t) +Am(t) + 1]

(22)
The analysis in [6] indicates that the smaller ∆(t) is, the

more likely Qm(t) and Am(t) (∀m ∈ M) are stabilized. In
problem P1, in addition to the queues we want to stabilize,
there is also a “penalty process” y(t) we want to minimize,
which is defined as

y(t) =

N∑
n=1

Cn(t). (23)

Thus, we turn to minimize ∆(t) + V y(t) in each time slot
t (t ∈ T) based on the Lyapunov optimization techniques.
Here, V is a weight constant for computation offloading cost.
Following Eq. (22), ∆(t) + V y(t) is constrained as

∆(t) + V y(t) ≤
M∑

m=1

−[Qm(t) +
1

2
Am(t)(Am(t) + 2)]pmE{sm(t)|Π(t)}

+
M∑

m=1

[φmQm(t) +Am(t) + 1] + V y(t)

(24)
Instead of directly minimizing ∆(t) + V y(t), we seek to

design an algorithm to minimize the right-hand-side of Eq.
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(24). Here,
M∑

m=1
[φmQm(t) +Am(t) + 1] only relies on Π(t)

and is independent of the channel allocation decision ŝ(t) and
the computation offloading decision x̂(t). Thus, we just need
to optimize problem P2 in each time slot as

P2 min
⟨ŝ(t),x̂(t)⟩

Λ(t) =
M∑

m=1

−Zm(t)E{sm(t)|Π(t)}+V
N∑

n=1

Cn(t),

(25)
where Zm(t) = [Qm(t) + 1

2Am(t)(Am(t) + 2)]pm.
2) Solving the Static Optimization Problem: In problem P2,

the channel allocation decision ŝ(t) affects the computation
offloading cost Cn(t) (n ∈ N) of mobile users as follows.

When no sensors update the data, i.e.,
M∑

m=1
sm(t) = 0, all

communication resources are dedicated to offloading mobile
tasks, BO(ŝ(t)) = B. If there exists one sensor updating the
data, the bandwidth of the computation offloading channel is
BO(ŝ(t)) = B − BU. Thus, P2 can be analyzed by dividing
into two cases:

i) No sensors update the data. In this case, sm(t) = 0 (∀m ∈
M), and problem P2 is reduced to the computation offloading
problem given BO = B as

P3 min
N∑

n=1

Cn(x̂(t))

s.t. xn(t) ∈ {0, 1} ∀n ∈ N.

(26)

ii) There exists one sensor updating the data. In this case,
BO = B − BU. As the computation offloading cost Cn(t)
is independent of the channel allocation decision when BO

is given, we just need to optimize the channel allocation

decision to minimize
M∑

m=1
−Zm(t)E{sm(t)|Π(t)}, and the

computation offloading decision to minimize
N∑

n=1
Cn(t), sepa-

rately. For the former, we need to decide which sensor among
the M sensors to update its data. As the objective is to

minimize
M∑

m=1
−Zm(t)E{sm(t)|Π(t)}, we just need to choose

the sensor m with the maximum Zm(t). For the latter, we
just need to solve the computation offloading problem given
BO = B −BU.

By summarizing the above two cases, the optimal channel
allocation decision ŝ(t) and computation offloading decision
x̂(t) can be determined, and the details are summarized in
Algorithm 1.

In algorithm 1, the main computation complexity comes
from selecting the sensor m

′
to update its data (Step 8)

and solving problem P3 to obtain the computation offloading
decision x̂(t) (Step 12) in each time slot. Selecting the sensor
m

′
has O(M) complexity. Based on the analysis of [7],

solving problem P3 centrally is NP-hard as the computation
offloading problem in the scenario with an edge node can be
changed into a bin-packing problem. The main concern is how
to solve problem P3 with reduced complexity.

Game-theoretic analysis on the computation offloading
problem has been extensively investigated to reduce the com-
plexity with decentralized solutions. In this work, we seek to

Algorithm 1 Freshness-Aware Channel Allocation and Com-
putation Offloading
Input: The throughput constraint φm, and the success prob-

ability pm of sensors (m ∈ M).
The computation task Gn, computation capacity fn, com-
putation power pn, allocated edge capacity f edge

n , and
transmission power ptransn of mobile users (n ∈ N).

Output: The channel allocation decision ŝ∗(t) and the com-
putation offloading decision x̂∗(t).

1: Let s0m(t) = 0 for ∀m ∈ M.
2: Let BO(ŝ0(t)) = B.
3: Solve problem P3 given BO(ŝ0(t)), and obtain x̂0(t)

and the corresponding computation offloading cost
N∑

n=1
Cn(x̂

0(t)).

4: Let Λ0(t) = V
N∑

n=1
Cn(x̂

0(t)).

5: Let Am(1) = 1, Qm(1) = 0.
6: for each t ∈ T do
7: Compute Zm(t) for ∀m ∈ M as

Zm(t) = [Qm(t) + 1
2Am(t)(Am(t) + 2)]pm.

8: m
′
= argmax

m∈M
{Zm(t)}.

9: sm′ (t) = 1, sm(t) = 0 (∀m ̸= m
′
).

10: Let BO(ŝ(t)) = B −BU.
11: Solve problem P3 given BO(ŝ(t)), and obtain x̂

′
(t)

and the corresponding computation offloading cost
N∑

n=1
Cn(x̂

′
(t)).

12: Λ
′
(t) = −Zm′ (t) + V

N∑
n=1

Cn(x̂
′
(t)).

13: if Λ0(t) ≤ Λ
′
(t) then

14: ŝ∗(t) = ŝ0(t), x̂∗(t) = x̂0(t).
15: else
16: ŝ∗(t) = ŝ

′
(t), x̂∗(t) = x̂

′
(t).

17: end if
18: Update Am(t) according to (4) for ∀m ∈ M.
19: Update Qm(t) according to (16) for ∀m ∈ M.
20: end for

design an algorithm to solve P3 based on the game-theoretic
analysis. The computation offloading problem P3 has the
following property.

Theorem 2. Problem P3 has finite improvement property.

Proof. Please refer to Appendix B.

With Theorem 2, we can conclude that the computation
offloading game can reach the unique Nash equilibrium after
finite improvement iterations. By exploiting this property, we
try to reduce the computation complexity (which can be
represented in number of improvement iterations) through
enlarging the improvement range of each iteration. Thus in
each iteration, we select the mobile user with the highest im-
provement range to update its computation offloading decision,
and the number of iterations can be significantly reduced. The
main idea can be summarized in Algorithm 2.
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Algorithm 2 Computation Offloading Decision with Reduced
Complexity

1: Initialization: each mobile user n initially chooses to
execute the computation task locally at the mobile device,
i.e., x0

n(t) = 0.
2: for each iteration i do
3: Initialize the update user set Φ = ∅.
4: for each mobile user n ∈ N do
5: Let xn = 1− xi−1

n (t).
6: if Cn(xn, x

i−1
−n (t)) < Cn(x

i−1
n (t), xi−1

−n (t)) then
7: Add mobile user n into the update user set Φ.
8: Compute the improvement range of n as

ηn = Cn(x
i−1
n (t), xi−1

−n (t))− Cn(xn, x
i−1
−n (t)).

9: end if
10: end for
11: if Φ = ∅ then
12: Break.
13: end if
14: Select n∗ ∈ Φ with the largest improvement range ηn

to update its computation offloading decision, xi
n∗
(t) =

1− xi−1
n∗

(t).
15: Keep the computation offloading decisions of the other

mobile users unchanged, i.e., xi
−n∗

(t) = xi−1
−n∗

(t).
16: end for

Here, x−n(t) represents the computation offloading decisions
of mobile users except n. Let I denote the number of improve-
ment iterations in Algorithm 2. In each iteration i, obtaining
the update user set (Step 4-Step 9) and selecting the user
with the largest improvement range to update the computation
offloading decision (Step 14-Step 15) dominate the complexity
of algorithm 2, which both have O(N) complexity. Thus,
solving problem P3 with algorithm 2 has O(NI) complexity.

Based on the definition of ordinal potential game in (31), the
improvement trends of mobile user cost Cn(x̂) and the ordinal
potential function U(x̂) are identical. To further analyze the
number of improvement iterations I , we turn to analyze
the improvement process of the ordinal potential function.
According to the potential function in (32), there is

U(x̂) ≤ 1

2
[max
n∈N

(P trans
n gn)]

2N2 +max
n∈N

(P trans
n gn)max

n∈N
(δn)N.

(27)
When the improvement iteration ends, the potential function
U(x̂end) > 0. Thus, the overall improvement range of the
potential function in algorithm 2 will not exceed

1

2
[max
n∈N

(P trans
n gn)]

2N2 +max
n∈N

(P trans
n gn)max

n∈N
(δn)N.

When each mobile user n changes its computation offloading
decision from xn to 1 − xn, the improvement range of the
potential function evolves as

U(xn, x−n)− U(1− xn, x−n)
= P trans

n gn|δn −
∑
i ̸=n

P trans
i gixi| > 0. (28)

In algorithm 2, we select the mobile user n with the largest
improvement range ηn to update its computation offloading

decision in each improvement iteration (Step 14). Correspond-
ingly, the improvement range of the potential function in the
improvement iteration is also the largest. By summarizing
the above analysis, the overall improvement range of the
potential function is upper-bounded, and the improvement
range in each iteration is maximized. Therefore, the number
of improvement iterations I can be significantly reduced.
Remember the computation complexity analysis of algorithm
1, and the complexity can be given as O(T ∗M + T ∗NI).

C. Discussion

In the above analysis, we assume that fixed bandwidth is
reserved for the information update channel (i.e., BU ) and
no more than one sensor updates the information in each
time slot. Our proposed algorithm can be easily extended to
the scenario that the information update channel has varying
bandwidth and multiple sensors are allowed to update their
information simultaneously. As the information update channel
with more bandwidth can allow more sensors to update the
information, we just need to match the reserved bandwidth
to the number of concurrently updating sensors. When all the
sensors are allowed to update, further increasing the bandwidth
is no longer beneficial for reducing AoI of sensors at the edge
node. Thus, we at most need to run the algorithm similar to
Algorithm 1 (the main difference stems from Step 8) M times
for the scenario with changing information update bandwidth.
For example, if the information update channel with BU (t)
bandwidth can allow W sensors to update the information in
one time slot, we just need to choose the first W sensors
with the largest Zm(t) to update the information (in Step 8 of
Algorithm 1). The computation offloading decisions can still
be determined by Algorithm 2 with the only difference that the
bandwidth is changed to B −BU (t). In this case, the overall
computation complexity is O(T ∗M logM + T ∗MNI).

V. SIMULATION RESULTS

A. Simulation Setup

We simulate an edge node covering a 50m range area. In
this area, there are a total of M sensors which can fetch
fresh information and a set of N mobile users with freshness-
aware and cost-sensitive computation tasks to process. The
total wireless bandwidth B = 100 Mbps, and the reserved
bandwidth for the information update channel is BU = 40
Mbps. We consider T = M ∗ 103 time slots. The successful
transmission probability of sensors pm is within [0.8, 1.0]
(m ∈ M). The lower bound of successful transmission
frequency is φm ∈ [0.75,1]

M units of information per time slot,
which satisfies the necessary and sufficient condition for the
feasibility [32]. We take object recognition as the example
of computation tasks, requiring αn = 1000 Megacycles
computation and βn = 600 KB data to be transmitted when
offloading the task [7]. The computation capacity of mobile
devices fn ∈ [1.0, 2.0] GHz. The local processing power
on mobile devices is Pn = 10 mW [24], [28]. The edge
capacity allocated to each edge device f edge

n = 10 GHz. The
transmission power of mobile devices is P trans

n = 100 mW,
and the background interference ωn = −100 dBm [28]. The
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Fig. 2. Computation offloading cost with # of mobile users: number of sensors
M = 10.

Fig. 3. AoI of different algorithms: number of sensors M = 10, number of
mobile users N = 10.

channel gain of mobile devices gn is set as d−o, where d is
the distance from edge node to mobile devices and o is the
path loss parameter o = 4 [28].

We compare our proposed algorithm with four benchmark
algorithms:
AoI-Prior algorithm (MWCA-2): In each time slot, the infor-
mation upadate channel is reserved and allocated to the sensor
with the largest weight Zm(t) which is similar as [14]. The
computation offloading decision is made by algorithm 2.
Randomly-Allocate-Channel algorithm (RAC-2): In each time
slot the information update channel is allocated to a sensor
randomly. Mobile users make the computation offloading
decision by algorithm 2.
Throughput-aware-Allocate-Channel algorithm (TAC-2): In
each time slot, the information update channel is allocated
to the sensor with the largest throughput debt. Mobile users
make the computation offloading decision by algorithm 2.
Edge-First-Computation-Offloading algorithm (1-EFCO): In
each time slot, the channel allocation decision is made by
algorithm 1. The computation tasks of mobile users are all
offloaded to the edge for processing.

B. Simulation Results

Fig. 4. Impact of computation loads on different algorithms: number of
sensors M = 10, number of mobile users N = 10.

1) Computation Offloading Cost: The computation offload-
ing cost of different algorithms are shown in Fig. 2. Compared
to the benchmark algorithms, the proposed algorithm always
yields the lowest computation offloading cost. When the
number of mobile users are small, the proposed algorithm
and the 1-EFCO algorithm yield the same and lower com-
putation cost than the other three algorithms. That’s because
when the number of mobile users are small, the computation
offloading channel can provide sufficient bandwidth, and all
mobile users choose to offload the computation tasks to the
edge node. Moreover, the computation offloading cost can
be significantly reduced when more bandwidth is allocated
to computation offloading, thus the proposed algorithm and
the 1-EFCO algorithm devoted all bandwidth to computation
offloading, yielding lower computation cost than the other
three benchmark algorithms. When the number of mobile
users increases, the bandwidth of the computation offloading
channel gets scarce for all mobile user to offload computation
tasks, and more mobile users choose to process the computa-
tion tasks on mobile devices. Increasing the bandwidth of the
computation offloading channel cannot reduce the computation
offloading cost apparently. Thus, the proposed algorithm has
more approximate computation offloading cost with the other
three benchmark algorithms when the number of mobile users
is large.

2) Average AoI of Sensors: Fig. 3 shows the average AoI
of sensors in different algorithms. The benchmark algorithms
(apart from 1-EFCO) have lower AoI than our proposed
algorithm, as in each time slot there exists a sensor selected
to update its information without considering leaving the
bandwidth for mobile users to offload computation tasks. The
proposed algorithm can achieve much lower average AoI than
1-EFCO because 1-EFCO has much higher computation cost
and only higher AoI can incent to reserve bandwidth for
information updating of sensors.

3) Impact of Computation Loads: To evaluate the impact
of computation loads on different algorithms, we conduct
simulations and the results are shown in Fig. 4. It can be seen
from Fig. 4 that the computation offloading costs of different
algorithms overall increase with the computation loads of
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(a) AoI of benchmark algorithms: number of sensors M =
10, number of mobile users N = 10.

(b) Accumulated throughput debt of benchmark algorithms:
number of sensors M = 10, number of mobile users N = 10.

Fig. 5. Analysis of the proposed channel allocation policy

mobile users. The jitters stem from the randomness of the
computation capacities of mobile devices and the wireless
environment of mobile devices are in. Compared with the
benchmark algorithms, the proposed algorithm always yields
the minimum computation offloading cost. The computation
offloading cost of the proposed algorithm increases more
slowly with the computation loads than MWCA-2, RAC-2,
and TAC-2, as more bandwidth is allocated for computation
offloading when the computation loads are heavy while the
other three algorithms have fixed bandwidth for computation
offloading. When the computation loads are larger than 1300
Megacycles, all computation tasks are offloaded to the edge,
thus the proposed algorithm has identical computation offload-
ing cost with the 1-EFCO algorithm.

4) Further Analysis of the Channel Allocation Policy:
To validate the efficiency of the proposed channel allocation
policy (Step 8 of Algorithm 1), we compare the AoI and
accumulated throughput debt of sensors as in Fig. 5. As in
MWCA-2, RAC-2, and TAC-2, the computation offloading of
mobile users is not considered, and MWCA-2 has the same
channel allocation policy (i.e., choosing the sensor with the
largest Zm(t) to update the information) with our proposed
algorithm, the efficiency of the channel allocation policy can
be validated by comparing the three benchmark algorithms.

Fig. 6. Number of iterations with number of mobile users.

The simulation results demonstrate that the proposed channel
allocation policy can yield the lowest AoI among the three
algorithms and much lower accumulated throughput debt than
RAC-2. TAC-2 has the lowest accumulated throughput debt
as it always chooses the sensor with the largest accumulated
throughput debt to update the information, which thus can
reduce the overall accumulated throughput debt to the largest
extent.

5) Scalability of the Computation Offloading Policy: Ac-
cording to the theoretical analysis in Sec. IV, Algorithm 2 can
significantly reduce the number of iterations at the cost of cen-
tralized control over mobile users (which induces information
collection overhead and additional computation complexity to
choose the mobile user with the largest improvement range).
In this section, we evaluate the scalability by simulation
the number of iterations when achieving the equilibrium in
Algorithm 2. The results are shown in Fig. 6. It is demonstrated
that the number of iterations increases slower than linearly
with the number of mobile users. Thus, Algorithm 2 has good
scalability with the increasing number of mobile users.

VI. CONCLUSIONS

To our best knowledge, this paper is the first to jointly
optimize the channel allocation and computation offloading
decisions by considering the tradeoff between keeping fresh
information at the edge node and reducing the computation
offloading cost of mobile users. We formulate the problem as
a nonlinear integer dynamic optimization problem, aiming at
optimizing the computation offloading cost within the AoI and
throughput constraints of sensors. To overcome the challenges
of AoI-computation cost tradeoff, AoI time dependency and
high complexity caused by heterogenous users, we propose
an algorithm with reduced computation complexity based on
Lyapunov optimization techniques and the potential game
theory. Simulation results have demonstrated the effectiveness
and scalability of the proposed algorithm. For the future work,
the problem in the multi-edge scenario will be investigated and
cooperation among edge nodes will be considered to provision
fresh information and reduce computation offloading cost.
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APPENDIX A
PROOF OF THEOREM 1

From the definition of Q(t) in (16), there is

Qm(t+ 1) ≥ Qm(t) + φm − Ωm(t).

It can be derived that

Qm(t+ 1)−Qm(t) ≥ φm − Ωm(t)
Qm(t)−Qm(t−1) ≥ φm − Ωm(t−1)

...
Qm(2)−Qm(1) ≥ φm − Ωm(1).

(29)

Sum up both sizes of (29) through T time slots, divide by T
and take a limit, there is

lim
T→∞

Qm(T + 1)−Qm(1)

T
≥ φm − lim

T→∞

1

T

T∑
t=1

Ωm(t).

From the definition of queue rate stable, the stability of Q(t)
requires that

lim
T→∞

Qm(T )

T
= 0. (30)

Moreover,

lim
T→∞

Qm(1)

T
= 0.

Therefore, enforcing the stability of Q(t) is equivalent to
ensuring

φm − lim
T→∞

1

T

T∑
t=1

Ωm(t) ≤ 0.

Thus, the throughput constraint C2 in problem P1 can be
satisfied.

APPENDIX B
PROOF OF FINITE IMPROVEMENT PROPERTY

Monderer et al in [8] have proved that an ordinal po-
tential game has a unique Nash equilibrium and has finite
improvement property. In this section, we first formulate the
decentralized computation offloading decision problem as a
computation offloading game. Thus, to prove that problem P3
has finite improvement property, we just need to prove that
the computation offloading game is an ordinal potential game.
(The analysis of this section has removed the parameter t since
problem P3 is a static optimization problem).

We formulate the decentralized computation offloading
problem as a computation offloading game. In this game, the
players are the mobile users N with computation tasks to
process.. The players’ strategies are the computation offloading
decisions x̂ of mobile users. The players’ costs are the com-
putation offloading costs Cn(x̂) (n ∈ N) of mobile users (We
denote local processing cost of user n as C0

n). When multiple
mobile users simultaneously offload computation tasks via the
computation offloading channel, interference among the users
can be caused as in Eq. (8). Hence the computation offloading
cost of n can be denoted as Cn(xn, x−n). From the definition
of the potential game [8], if for any player n ∈ N and any

strategies of the other players x−n, if there exists a function
U(x̂) satisfying

Cn(xn, x−n)− Cn(x
′

n, x−n) > 0

iff U(xn, x−n)− U(x
′

n, x−n) > 0
(31)

for any xn and x
′

n, the game is an ordinal potential game,
and the function is an ordinal potential function. In the
computation offloading game, we can find a function U(x̂)
given as

U(x̂) =
1

2

N∑
n=1

∑
l ̸=n

P trans
n gnxnP

trans
l glxl

+
N∑

n=1

P trans
n gnδn(1− xn),

(32)

where δn =
P trans

n gn

2

βn(1+P trans
n γn)

BO(C0
n− αn

f
edge
n

−γnEtail
n )

−1

− ωn. We can prove

that U(x̂) can satisfy (31) for any xn, x
′

n and x−n (∀n ∈ N).
Thus, the computation offloading game is an ordinal potential
game, and we can solve problem P3 by exploiting the finite
improvement property of the game.
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