

 Int. J. Web and Grid Services, Vol. 11, No. 4, 2015 347

 Copyright © 2015 Inderscience Enterprises Ltd.

FTCloudSim: support for cloud service reliability
enhancement simulation

Ao Zhou, Shangguang Wang*,
Chenchen Yang, Lei Sun,
Qibo Sun and Fangchun Yang
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
Haidian, Beijing 100876, China
Email: hellozhouao@gmail.com
Email: sgwang@bupt.edu.cn
Email: ccyang@bupt.edu.cn
Email: leisun@bupt.edu.cn
Email: qbsun@bupt.edu.cn
Email: fcyang@bupt.edu.cn
*Corresponding author

Abstract: Recently, an increasing number of companies have begun to deploy
their application services in the cloud. However, the cloud data centre
downtime has negatively affected the quality of cloud service. Many
researchers have studied the problem of cloud service reliability assurance.
However, there is a shortage of tools that enable researchers to evaluate their
newly proposed cloud service reliability enhancement mechanisms. To fill this
gap, in this paper, we propose FTCloudSim as a reliable cloud data centre
simulation system based on the basic functionalities of CloudSim. FTCloudSim
provides an extensible interface to help researchers implement new cloud
service reliability enhancement mechanisms. In addition, FTCloudSim can also
study the behaviour of the newly proposed mechanisms. We demonstrate the
capabilities of FTCloudSim by using five reliability enhancement mechanisms.
The results indicate the benefits of our proposed simulation system.

Keywords: cloud computing; CloudSim; data centre; cloud service; reliability;
fault tolerance.

Reference to this paper should be made as follows: Zhou, A., Wang, S., Yang,
C., Sun, L., Sun, Q. and Yang, F. (2015) ‘FTCloudSim: support for cloud
service reliability enhancement simulation’, Int. J. Web and Grid Services,
Vol. 11, No. 4, pp.347–361.

Biographical notes: Ao Zhou is currently an Assistant Professor at Beijing
University of Posts and Telecommunications. She received her PhD degree in
Computer Science and Technology from Beijing University of Posts and
Telecommunications in 2015. Her research interests include cloud computing
and service reliability.

Shangguang Wang is an Associate Professor at Beijing University of Posts and
Telecommunications. He received his PhD degree in Computer Science and
Technology from Beijing University of Posts and Telecommunications in
2011. His research interests include service computing and cloud computing.

 348 A. Zhou et al.

He served as Guest Editor for IEEE System Journal, Journal of Computational
Science, Journal on Wireless Communications and Networking, etc. He also
served as PC Chair for IOV 2014 and SC2 2014.

Chenchen Yang is a Postgraduate student at Beijing University of Posts and
Telecommunications, China. His research interests include service selection
and cloud service.

Lei Sun is a Postgraduate student at Beijing University of Posts and
Telecommunications, China. His research interests include service selection
and cloud service.

Qibo Sun is currently an Associate Professor at Beijing University of Posts and
Telecommunications, China. He received his PhD degree in Communication
and Electronic System from Beijing University of Posts and
Telecommunications in 2002. He is a Member of the China Computer
Federation. His research interests include services computing, Internet of
Things and network security.

Fangchun Yang is currently a Professor at Beijing University of Posts and
Telecommunications, China. He received his PhD degree in Communication
and Electronic System from the Beijing University of Posts and
Telecommunications in 1990. He has published six books and more than
80 papers. His research interests include network intelligence, services
computing, communications software, softswitching technology, and network
security. He is a fellow of the IET.

1 Introduction

Because of its ability to allocate resources dynamically and instantaneously as needed,
cloud computing has become a popular computing model nowadays (Armbrust et al.,
2010; Marston et al., 2011). As cloud computing allows the physical resources to be
shared by a vast number of cloud service providers (Buyya et al., 2009), companies and
other organisations have begun deploy their application services in the cloud to save on
the costs of maintaining their own infrastructure (Fox et al., 2009; Calheiros et al., 2011).

However, there are hundreds or thousands of host servers and virtual machines in a
cloud data centre where failures are the norm, rather than the exception (Bauer and Adams,
2012; Schwarzkopf et al., 2012). Therefore, this problem is being thoroughly studied.
Researchers have begun to study the problem and have proposed many fault-tolerant
mechanisms to enhance the reliability of cloud services (Dai et al., 2009; Undheim et al.,
2011; Do et al., 2013). However, there is a shortage of tools that enable researchers to

evaluate their newly proposed cloud service reliability enhancement mechanisms.
Actually, a researcher can evaluate his new mechanism in two ways. Firstly, he can

conduct the experiment in a real cloud data centre. There are mainly two shortcomings in
this. For one, cloud data centres are sometimes not easy to access. Making investments to
build one’s own infrastructures are very uneconomic, but Amazon or Google may not
allow one to modify one’s system management facilities. The other thing is that a
comprehensive evaluation of the newly proposed mechanism in a real data centre is
extremely difficult. It requires the interaction of a large amount of host severs, virtual

 FTCloudSim 349

machines, storage systems and network elements. The complex conditions may go out of
the control of researchers, which can impact the quality of evaluation. However, the
problem can be solved by using a cloud simulation toolkit.

CloudSim (Calheiros et al., 2011) is a cloud simulation toolkit developed by the
CLOUDS Laboratory of the University of Melbourne. CloudSim supports the simulation
of a virtualised cloud data centre. It enables researchers to experiment on cloud
computing infrastructures. However, CloudSim cannot support the functions related to
reliability enhancement currently. Fortunately for the researches, CloudSim is an
extensible simulation tool. Researchers can extend the existing functionalities provided
by CloudSim, and add new features to CloudSim, including CloudAnalyst (http://www.
cloudbus.org/cloudsim/CloudAnalyst.zip), CloudAuction (http://www.cloudbus.org/
cloudsim/CloudAuctionV2.0.zip) and DynamicCloudSim (Bux and Leser, 2013), among
others. Although DynamicCloudSim can support fault tolerance in some ways, currently
it can only determine whether a task succeeds or fails. None of the available current tools
can properly aid researchers in evaluating their newly proposed mechanisms.

In this work, to overcome these limitations of current cloud simulation toolkits, we
present FTCloudSim, a CloudSim-based system which can model and simulate the cloud
service reliability enhancement mechanisms. An extensible interface is provided in
FTCloudSim to aid researchers in implementing new mechanisms easily. In addition,
FTCloudSim can trigger failure events to test the performance of each mechanism. After
execution, it will generate information on the necessary metrics to highlight the
advantages and shortcomings of the mechanism.

The rest of the paper is organised as follows. Related work is discussed in Section 2.
Section 3 introduces our proposed FTCloudSim. Section 4 gives an overview of our
experiments. Finally, we conclude in Section 5.

2 Related work

In this section, related simulation toolkits are discussed. There have been many
simulation systems to support the research of cloud computing. The most famous
simulator is CloudSim. CloudSim enables the simulation of cloud computing
infrastructures and cloud applications. Researches can evaluate their resource allocation
approaches or task schedule algorithms by using CloudSim.

CloudSim is a cloud simulation toolkit developed by the CLOUDS Laboratory of
University of Melbourne. CloudSim supports the simulation of a virtualised cloud data
centre. It enables researchers to experiment on cloud computing infrastructures. In
CloudSim simulation, a data centre is composed of host servers and storage servers. A
host server can host one or more virtual machines. A data centre assigns virtual machines
to host servers based on its policy. Virtual machines process the cloudlets according to
the policy of the Cloudlet Scheduler. All policies can be redefined by the user.

As shown in Figure 1, CloudSim consists of four layers. The first lever is the cloud
resource level. In this level, a data centre consists of a set of host servers. Host represents
a physical machine. The hosts have different configurations, such as CPU type, memory
size and disk size. The second level is the cloud service level. The simulator will allocate
physical resources to each virtual machine based on the allocation strategies. The virtual
machines are scheduled at two levels: host server level and virtual level. This level is
extensible. The researchers can implement their own allocation strategies by extending
the basic one. The third level is the virtual machine service level. This level manages the

 350 A. Zhou et al.

execution of applications. The fourth level is the user interface structures level. The
virtual machines can share the physical resources among others when they are placed in
the same host server. Cloudlet models the application service. CloudSim now can model
single application service and workflow application service. Every cloudlet has a pre-
assigned length and amount of data needed to be fetched from the database for the
successfully execution of the application.

Figure 1 The framework of CloudSim

But CloudSim still has some limitations. For example, functions related to reliability
enhancement cannot be supported by CloudSim. Fortunately, Cloudsim is an extensible
simulation framework. Hence, many researches extend some of the capabilities of
CloudSim and add new features to it.

RealCloudSim (http://sourceforge.net/projects/realcloudsim) is capable of modelling
network topologies. Users can construct a data centre network based on the BRITE
format. Researches can build a complex data centre network according to their designed
network connection methods. However, it cannot distinguish the switches with different
configurations. To overcome these limitations, NetworkCloudSim (Garg and Buyya,
2011) is presented to model network topologies and parallel applications. It adds root
switches, aggregated switches and edge switches to CloudSim.

CloudAnalyst is also a tool developed at the University of Melbourne. CloudAnalyst
is built on top of CloudSim, and it supports location-distributed application. CloudAnalyst
can simulate the location of data centres and the traffic between two data centres.
Therefore, it helps researches to see how distributed applications are processed in
location-distributed data centres.

There are still other CloudSim-based simulation toolkits. CloudAuction implements
the auction-based mechanism in CloudSim. CloudReports (https://github.com/
thiagotts/CloudReports) is developed for the purpose of simulating distributed computing
environments. CloudMIG Xpress (http://sourceforge.net/projects/ cloudmigxpress/) can
show the cost of migrating software to the cloud environment. WorkflowSim (https://
github.com/WorkflowSim/) can support workflow preparation and workflow job

 FTCloudSim 351

scheduler. DynamicCloudSim is a tool that can simulate the dynamic changes to the
performance of virtual machines. Although DynamicCloudSim can support fault
tolerance in some way, currently, it can only determine whether a task succeeds or fails.

Therefore, none of the current tools can simulate cloud service reliability
enhancement mechanism perfectly. For example, currently, the tools cannot trigger the
host failure events or virtual machine failure events. But all this can be simulated by
FTCloudSim. We will show the design of FTCloudSim in the next section.

3 Design of FTCloudSim

We will present the design of FTCloudSim in this section.

3.1 System architecture

As shown in Figure 2, FTCloudSim has added eight modules to CloudSim, which
will be described in this section. The newly added function modules are divided into
three types: fundamental functions, support for checkpoint and support for replication.
Almost all the reliability enhancement methods are based on the exploitation of
redundancy. Replication and checkpointing are two widely used basic service reliability
enhancement mechanisms. FTCloudSim can support checkpointing- and replication-
based fault-tolerant mechanism, as of now.

Figure 2 The framework of FTCloudSim

3.2 Fundamental functions

The fundamental functions of FTCloudSim include the following:

1 Fat-tree data centre network construction. Although CloudSim supports the
simulation of data centre network topologies, the user needs to construct the network

 352 A. Zhou et al.

himself. The process is troublesome if the network is complex. The fat-tree data
centre network (Al-Fares et al., 2008; Bilal et al., 2013) is a typical architecture of a
current commodity data centre. Hence, we provide the functionality to construct a
fat-tree data centre network automatically. The user only needs to set the port
number in the configuration file. Figure 3 shows a fat-tree data centre network with
four ports.

2 Failure and repair event triggering. Failure events and repair events are triggered.
The failure events can be generated according to some special distribution (Rausand
and Høyland, 2004), Weibull distribution or exponential distribution, etc. The failure
event data and the repair event data can be saved to a file so the experiment can be
repeated.

3 Results generation. This module outputs the simulation results to the user. In cloud
computing environments, all resources are commercialised. Therefore, in addition to
ensuring reliability, the method should reduce resource consumption based on data
centre characteristics. Therefore, FTCloudSim will provide three types of metrics to
highlight the advantages and shortcomings of each mechanism. The first metric type
is the ability to enhance the reliability of cloud service. The metrics include the total
execution time (total time the method takes to complete all tasks) and the average
lost time (all time lost because of failure). The second metric is network resource
usage. In addition to the total checkpoint image data transferred by all switches, the
metric includes the total checkpoint image data transferred by the core switches, the
aggregation switches and the edge switches. The third metric is storage resource
usage. The metric includes the total disk usage (the disk usage for the storage of
checkpoint image).

Figure 3 Fat-tree data centre network (see online version for colours)

3.3. Support for checkpoint

Checkpoint is an important reliability enhancement mechanism. As shown in Figure 4, in
checkpoint mechanism, the running state of a virtual machine is periodically saved as a

 FTCloudSim 353

checkpoint image. The checkpoint image is stored in a persistent storage system. When a
virtual machine fails, it can be restarted based on the checkpoint image. We have added
two new modules to support checkpoint mechanism in CloudSim: checkpoint image
generation and storage, and checkpoint-based cloudlet recovery.

Figure 4 Checkpointing (see online version for colours)

3.3.1 Checkpoint image generation and storage

A checkpoint image is generated, transferred and stored periodically based on the
checkpoint mechanism. This module is extensible. The user can design its own
checkpoint schedule strategy by extending the default one. The strategy can determine
when to generate the image, the content of the image and where to store the image.

Figure 5 Sequence diagram: checkpoint image generation and storage

 354 A. Zhou et al.

Figure 5 shows the sequence diagram of checkpoint image generation and storage.

 CheckpointStorageIndex. An abstract class represents the checkpoint image storage
strategy. It serves as an index and stores the checkpoint image storage node for each
virtual machine. CheckpointStorageIndex contains an abstract storage node searching
method. A user can replace the method with a new checkpoint image storage strategy.

 Checkpoint-making scheduler. The class triggers the checkpoint-making event
periodically. Based on the pre-defined rules, it alerts a host to save the current state
of a special virtual machine as a checkpoint image. This module is extensible. The
user can implement a new rule by extending the basic one. The rule can determine
the time to make checkpoint, and the content of the checkpoint image.

 DatacenterNode. All simentities that can send and receive network packets are all
the subclass of DatacenterNode. The hosts, the storage nodes and the switches are all
DatacenterNode.

Firstly, the net data centre broker asks the checkpoint storage index to find a checkpoint
image storage node for each virtual machine. When the checkpoint storage index receives
the message, it searches an image storage node based on pre-defined rules. Before the
execution, the scheduler asks the checkpoint-making scheduler to help remind the virtual
machine execution state-saving time. When the state-saving time is up, the checkpoint-
making scheduler sends the host a message to remind him. When the host receives the
message, it saves current execution state of the virtual machine as a checkpoint image.
Then, the host generates a network packet which contains the checkpoint image, and
sends the packet to the storage node. The storage node stores the checkpoint image to the
database when receiving the packet.

3.3.2 Checkpoint-based cloudlet recovery

A task is resumed from the failure based on the latest available checkpoint image. If there
is no accessible checkpoint image, it will fetch the necessary data from the central
database and restart the interrupted task from the beginning.

Figure 6 Sequence diagram: checkpoint-based recovery

 FTCloudSim 355

Figure 6 shows the sequence diagram of checkpoint-based cloudlet recovery.

 Data centre destroyer. The data centre destroyer destroys the data centre by breaking
the hosts and virtual machines. The repair events of hosts and virtual machines are
also triggered by the data centre destroyer. We add a bool variable to indicate
whether a host or a virtual machine fails.

 RecoveryScheduler. An abstract class represents the recovery strategy. Recovery
schedule will recover the service from failure event based on pre-defined
mechanism. This module is also extensible. A user can replace the method with a
new recovery strategy.

Firstly, the data centre destroyer breaks a host or a virtual machine. After the host or the
virtual machine fails, the destroyer invokes recovery scheduler to recover the service.
The recovery scheduler searches for a host with enough free resources for each
interrupted virtual machine. Then, it asks the checkpoint storage index for the ID of the
checkpoint image storage node. After receiving the information, the recovery scheduler
sends a message containing the recovery host ID to the checkpoint image storage node.
The checkpoint image storage node sends the related checkpoint image to the recovery
host after receiving the message. Now, the recovery host recovers the service based on
the checkpoint image.

3.4 Support for replication

Replication is a reliability enhancement mechanism that relies on the exploitation of
redundancy. For example, the k-fault tolerance replication mechanism provides more
virtual machines than needed to ensure that all applications can be maintained, while any
k virtual machines fail at the same time. In the standby mechanism, several virtual
machines synchronously or asynchronously process the same task. We have added two
new modules to support the replication mechanism in CloudSim: replication-based
virtual machine placement and replication-based cloudlet recovery.

1 Replication-based virtual machine placement. To support replication in CloudSim,
we have the extended class AppNetCloudlet. Information such as how many virtual
machines are providing the application service, the location of the primary virtual
machines and the location of the backup virtual machines are stored in this class.

 A user can extend the virtual machine schedule mechanism of cloudsim to determine
the physical location of each primary or backup virtual machine. We have just
implemented a random location selection mechanism. A user can replace the module
with a new mechanism.

2 Replication-based cloudlet recovery. After the failure of a host server or a virtual
machine, the affected cloudlets need to be reassigned to the backup virtual machines.
Figure 7 shows the sequence diagram of replication-based cloudlet recovery. Firstly,
the data centre destroyer breaks a host or a virtual machine. After the failure of the
host or the virtual machine, the destroyer invokes the recovery scheduler to recover
the service. The recovery scheduler fetches information of the backup of the virtual
machine’s location from the class AppNetCloudlet. When the recovery scheduler
receivers the information, it searches for the recovery host for each cloudlet. All
cloudlets are re-submitted to their recovery hosts. This module is extensible. A user
can implement a new mechanism to determine how to reassign the cloudlets.

 356 A. Zhou et al.

Figure 7 Sequence diagram: replication-based image storage (see online version for colours)

4 Experiments

We present the new functions of FTCloudSim by using five replication-based cloud
service reliability enhancement mechanisms in this section. We have implemented the
FTCloudSim system and published the source code (http://sguangwang. com/ftcloudsim.
html). The following sections first describe the experimental setting. Then, experimental
results are discussed.

4.1 Experimental set-up

Now let us consider the following cloud service reliability enhancement background. In
cloud computing, a service is deployed in the virtual machine. Because there are tens of
thousands of service requests, the computing power of a single virtual machine is not
strong enough to process the large quantity of service requests. Hence, the service is
deployed in several virtual machines. Each virtual machine has a waiting queue. All tasks
assigned to the virtual machine are inserted into the queue.

In our experiment, we construct a 16-port fat-tree data centre network. The capacity
of the core link and aggregation link is set as 10 Gbps, and the capacity of edge link is set
as 1 Gbps. There are eight host servers in each subnet. Each host servers can host four
virtual machines at the most. The transfer delay of the core switch, aggregation switch
and edge switch are 1, 2 and 3 seconds, respectively. We generate 100 virtual machine
failure events and 26,000 tasks. The task size is uniformly distributed between 5 and 10
minutes. We multiple the task size by 6, and add the result to the submit time as the
deadline. All tasks are data-processing tasks. The data size is set as 300 MB. We name
the number of primary virtual machines as service concurrency. The service concurrency
is normally distributed between 10 and 20.

 FTCloudSim 357

We will demonstrate the capabilities of FTCloudSim by using the following five
replication-based cloud service reliability enhancement mechanisms:

 Cold-Backup. Suppose the service concurrency of a special service is m. After a host
fails, the recovery scheduler searches a new virtual machine to provide the
interrupted service.

 Hot-Backup. Suppose the service concurrency of a special service is m. There are m
number of services providing virtual machines and three hot standby virtual
machines. After a virtual machine fails, all the tasks in its waiting queue are
reassigned to a backup virtual machine.

 Head-First. Suppose the service concurrency of a special service is m. There are m
number of primary virtual machines and three hot standby virtual machines. All
tasks are assigned to the (m + 3) service-providing virtual machine. If a virtual
machine fails, the scheduler randomly selects a virtual machine for each task, and
adds it to the head of the waiting queue.

 Tail-First. Suppose the service concurrency of a special service is m. There are m
number of primary virtual machines and three hot standby virtual machines. All
tasks are assigned to the (m + 3) service-providing virtual machine. If a virtual
machine fails, the scheduler randomly selects a virtual machine for each task, and
adds it to the tail of the waiting queue.

 Random Selection. Suppose the service concurrency of a special service is m. There
are m number of primary virtual machines and three hot standby virtual machines.
All tasks are assigned to the (m + 3) service-providing virtual machine. If a virtual
machine fails, the scheduler randomly selects a virtual machine for each task and
adds it to a random place in the waiting queue.

To attack the failure of the host servers, the methods keep a copy of backup data on
another host server in the same subnet. Therefore, the data can be re-fetched from the
data backup server or the host where the failed virtual machine is placed. We will
evaluate the five mechanisms by using the following five metrics, and we only count the
packets related to data backup and data re-fetching.

 Failure rate: the percentage of tasks that does not complete before deadline.

 Root switch packets processed: the total size of network packets that has been
transferred by the root switches.

 Aggregation switch packets processed: the total size of network packets that has
been transferred by the aggregation switches.

 Edge switch packets processed: the total size of network packets that has been
transferred by the edge switches.

 Total packets processed: the total size of network packets that have been transferred
by all the switches.

In cloud computing environments, all resources are commercialised. The mechanisms
need to reduce resource consumption when enhancing the cloud service reliability. The
metrics related to packets processed can show the performance in network resource
consumption.

 358 A. Zhou et al.

4.2 Results

The performance of all the mechanisms is studied. Figure 8 shows the performance of
reliability enhancement. Figures 9–12 show the performance of network resource
consumption, including the results of root switch packets processed, aggregation switch
packets processed, edge switch packets processed and total packets processed.

Figure 8 Failure rate

Figure 9 Root switch packets processed (MB)

 FTCloudSim 359

As shown in Figure 8, the failure rate of Cold-Backup is higher than that of all other
mechanisms. Hot-Backup shows the strongest reliability enhancement ability. As shown
in Figures 9–12, the core-level network resource consumption and the aggregation-level
network resource consumption of Head-First, Tail-First and Random Selection are almost
the same. Of all the mechanisms, Hot-Backup consumes the most core-level network
resource and aggregation-level network the least resource. However, the edge-level
network resource consumption of all the mechanisms is almost the same. All in all,
Hot-Backup consumes more network resource than the other mechanisms.

Figure 10 Aggregation switch packets processed (MB)

Figure 11 Edge switch packets processed (MB)

 360 A. Zhou et al.

Figure 12 Total packets processed (MB)

Therefore, FTCloudSim can help highlight the advantages and shortcomings of the
mechanisms.

5 Conclusion

In this paper, we presented a CloudSim-based system called FTCloudSim for modelling
and simulation of cloud service reliability enhancement mechanism. FTCloudSim
consists of the new features: (1) fat-tree data centre network construction, (2) failure
event triggering, (3) repair event triggering, (4) checkpoint image generation and storage,
(5) replication-based virtual machine placement, (6) checkpoint-based service recovery,
(7) replication-based service recovery and (8) results generation. We present the new
functions by using five cloud service reliability enhancement mechanisms. The results
show that our system provides an easy-to-use reliability enhancement mechanism
implementation interface. Furthermore, FTCloudSim can also show the advantages and
shortcomings of each mechanism. Our future research involves providing easy-to-use
user interface and visualisation results display.

Acknowledgements

The work presented in this study is supported by NSFC (61272521), SRFDP
(20110005130001), the Fundamental Research Funds for the Central Universities
(2014RC1101) and Beijing Natural Science Foundation (4132048).

 FTCloudSim 361

References

Al-Fares, M., Loukissas, A. and Vahdat, A. (2008) ‘A scalable, commodity data center network
architecture’, ACM SIGCOMM Computer Communication Review, Vol. 38, No. 4, pp.63–74.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A. and Stoica, I. (2010) ‘A view of cloud computing’, Communications of the ACM,
Vol. 53, No. 4, pp.50–58.

Bauer, E. and Adams, R. (2012) Reliability and Availability of Cloud Computing, John Wiley &
Sons, New York.

Bilal, K., Manzano, M., Khan, S., Calle, E., Li, K. and Zomaya, A. (2013) ‘On the characterization
of the structural robustness of data center networks’, IEEE Transactions on Cloud Computing,
Vol. 1, No. 1, pp.64–77.

Bux, M. and Leser, U. (2013) ‘DynamicCloudSim: simulating heterogeneity in computational
clouds’, Proceedings of the 2nd ACM SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies, 22–27 June, New York, pp.1–12.

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. (2009) ‘Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility’,
Future Generation Computer Systems, Vol. 25, No. 6, pp.599–616.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A. and Buyya, R. (2011) ‘CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms’, Software: Practice and Experience, Vol. 41, No. 1,
pp.23–50.

Dai, Y-S., Yang, B., Dongarra, J. and Zhang, G. (2009) ‘Cloud service reliability: modeling and
analysis’, Proceedings of the 15th IEEE Pacific Rim International Symposium on Dependable
Computing, 16–18 November, Shanghai, China, pp.1–17.

Do, T., Gunawi, H.S., Do, T., Harter, T., Liu, Y., Gunawi, H.S., Arpaci-Dusseau, A.C. and Arpaci-
Dusseau, R.H. (2013) ‘The case for limping-hardware tolerant clouds’, Proceedings of the 5th
USENIX Workshop on Hot Topics in Cloud Computing, 25–26 June, San Jose, CA, pp.1–6.

Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A. and
Stoica, I. (2009) Above the Clouds: A Berkeley View of Cloud Computing, Technical Report
No. UCB/EECS-2009-28, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, 13pp.

Garg, S.K. and Buyya, R. (2011) ‘Networkcloudsim: modelling parallel applications in cloud
simulations’, Proceedings of the 4h IEEE International Conference on Utility and Cloud
Computing, 5–8 December, NSW, Victoria, pp.105–113.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J. and Ghalsasi, A. (2011) ‘Cloud computing: the
business perspective’, Decision Support Systems, Vol. 51, No.1, pp.176–189.

Rausand, M. and Høyland, A. (2004) System Reliability Theory: Models, Statistical Methods, and
Applications, John Wiley & Sons, New York.

Schwarzkopf, M., Murray, D.G. and Hand, S. (2012) ‘The seven deadly sins of cloud computing
research’, Proceedings of the 4th USENIX Workshop on Hot Topics in Cloud Computing,
12–13 June, Boston, MA, pp.1–5.

Undheim, A., Chilwan, A. and Heegaard, P. (2011) ‘Differentiated availability in cloud computing
SLAs’, Proceedings of the 12th IEEE/ACM International Conference on Grid Computing,
21–23 September, Lyon, France, pp.129–136.

