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Abstract: Recently, an increasing number of companies have begun to deploy 
their application services in the cloud. However, the cloud data centre 
downtime has negatively affected the quality of cloud service. Many 
researchers have studied the problem of cloud service reliability assurance. 
However, there is a shortage of tools that enable researchers to evaluate their 
newly proposed cloud service reliability enhancement mechanisms. To fill this 
gap, in this paper, we propose FTCloudSim as a reliable cloud data centre 
simulation system based on the basic functionalities of CloudSim. FTCloudSim 
provides an extensible interface to help researchers implement new cloud 
service reliability enhancement mechanisms. In addition, FTCloudSim can also 
study the behaviour of the newly proposed mechanisms. We demonstrate the 
capabilities of FTCloudSim by using five reliability enhancement mechanisms. 
The results indicate the benefits of our proposed simulation system. 
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1 Introduction 

Because of its ability to allocate resources dynamically and instantaneously as needed, 
cloud computing has become a popular computing model nowadays (Armbrust et al., 
2010; Marston et al., 2011). As cloud computing allows the physical resources to be 
shared by a vast number of cloud service providers (Buyya et al., 2009), companies and 
other organisations have begun deploy their application services in the cloud to save on 
the costs of maintaining their own infrastructure (Fox et al., 2009; Calheiros et al., 2011). 

However, there are hundreds or thousands of host servers and virtual machines in a 
cloud data centre where failures are the norm, rather than the exception (Bauer and Adams, 
2012; Schwarzkopf et al., 2012). Therefore, this problem is being thoroughly studied. 
Researchers have begun to study the problem and have proposed many fault-tolerant 
mechanisms to enhance the reliability of cloud services (Dai et al., 2009; Undheim et al., 
2011; Do et al., 2013). However, there is a shortage of tools that enable researchers to 

evaluate their newly proposed cloud service reliability enhancement mechanisms. 
Actually, a researcher can evaluate his new mechanism in two ways. Firstly, he can 

conduct the experiment in a real cloud data centre. There are mainly two shortcomings in 
this. For one, cloud data centres are sometimes not easy to access. Making investments to 
build one’s own infrastructures are very uneconomic, but Amazon or Google may not 
allow one to modify one’s system management facilities. The other thing is that a 
comprehensive evaluation of the newly proposed mechanism in a real data centre is 
extremely difficult. It requires the interaction of a large amount of host severs, virtual 
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machines, storage systems and network elements. The complex conditions may go out of 
the control of researchers, which can impact the quality of evaluation. However, the 
problem can be solved by using a cloud simulation toolkit. 

CloudSim (Calheiros et al., 2011) is a cloud simulation toolkit developed by the 
CLOUDS Laboratory of the University of Melbourne. CloudSim supports the simulation 
of a virtualised cloud data centre. It enables researchers to experiment on cloud 
computing infrastructures. However, CloudSim cannot support the functions related to 
reliability enhancement currently. Fortunately for the researches, CloudSim is an 
extensible simulation tool. Researchers can extend the existing functionalities provided 
by CloudSim, and add new features to CloudSim, including CloudAnalyst (http://www. 
cloudbus.org/cloudsim/CloudAnalyst.zip), CloudAuction (http://www.cloudbus.org/ 
cloudsim/CloudAuctionV2.0.zip) and DynamicCloudSim (Bux and Leser, 2013), among 
others. Although DynamicCloudSim can support fault tolerance in some ways, currently 
it can only determine whether a task succeeds or fails. None of the available current tools 
can properly aid researchers in evaluating their newly proposed mechanisms. 

In this work, to overcome these limitations of current cloud simulation toolkits, we 
present FTCloudSim, a CloudSim-based system which can model and simulate the cloud 
service reliability enhancement mechanisms. An extensible interface is provided in 
FTCloudSim to aid researchers in implementing new mechanisms easily. In addition, 
FTCloudSim can trigger failure events to test the performance of each mechanism. After 
execution, it will generate information on the necessary metrics to highlight the 
advantages and shortcomings of the mechanism. 

The rest of the paper is organised as follows. Related work is discussed in Section 2. 
Section 3 introduces our proposed FTCloudSim. Section 4 gives an overview of our 
experiments. Finally, we conclude in Section 5. 

2 Related work 

In this section, related simulation toolkits are discussed. There have been many 
simulation systems to support the research of cloud computing. The most famous 
simulator is CloudSim. CloudSim enables the simulation of cloud computing 
infrastructures and cloud applications. Researches can evaluate their resource allocation 
approaches or task schedule algorithms by using CloudSim. 

CloudSim is a cloud simulation toolkit developed by the CLOUDS Laboratory of 
University of Melbourne. CloudSim supports the simulation of a virtualised cloud data 
centre. It enables researchers to experiment on cloud computing infrastructures. In 
CloudSim simulation, a data centre is composed of host servers and storage servers. A 
host server can host one or more virtual machines. A data centre assigns virtual machines 
to host servers based on its policy. Virtual machines process the cloudlets according to 
the policy of the Cloudlet Scheduler. All policies can be redefined by the user. 

As shown in Figure 1, CloudSim consists of four layers. The first lever is the cloud 
resource level. In this level, a data centre consists of a set of host servers. Host represents 
a physical machine. The hosts have different configurations, such as CPU type, memory 
size and disk size. The second level is the cloud service level. The simulator will allocate 
physical resources to each virtual machine based on the allocation strategies. The virtual 
machines are scheduled at two levels: host server level and virtual level. This level is 
extensible. The researchers can implement their own allocation strategies by extending 
the basic one. The third level is the virtual machine service level. This level manages the 
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execution of applications. The fourth level is the user interface structures level. The 
virtual machines can share the physical resources among others when they are placed in 
the same host server. Cloudlet models the application service. CloudSim now can model 
single application service and workflow application service. Every cloudlet has a pre-
assigned length and amount of data needed to be fetched from the database for the 
successfully execution of the application. 

Figure 1 The framework of CloudSim 

 

But CloudSim still has some limitations. For example, functions related to reliability 
enhancement cannot be supported by CloudSim. Fortunately, Cloudsim is an extensible 
simulation framework. Hence, many researches extend some of the capabilities of 
CloudSim and add new features to it. 

RealCloudSim (http://sourceforge.net/projects/realcloudsim) is capable of modelling 
network topologies. Users can construct a data centre network based on the BRITE 
format. Researches can build a complex data centre network according to their designed 
network connection methods. However, it cannot distinguish the switches with different 
configurations. To overcome these limitations, NetworkCloudSim (Garg and Buyya, 
2011) is presented to model network topologies and parallel applications. It adds root 
switches, aggregated switches and edge switches to CloudSim. 

CloudAnalyst is also a tool developed at the University of Melbourne. CloudAnalyst 
is built on top of CloudSim, and it supports location-distributed application. CloudAnalyst 
can simulate the location of data centres and the traffic between two data centres. 
Therefore, it helps researches to see how distributed applications are processed in 
location-distributed data centres. 

There are still other CloudSim-based simulation toolkits. CloudAuction implements 
the auction-based mechanism in CloudSim. CloudReports (https://github.com/ 
thiagotts/CloudReports) is developed for the purpose of simulating distributed computing 
environments. CloudMIG Xpress (http://sourceforge.net/projects/ cloudmigxpress/) can 
show the cost of migrating software to the cloud environment. WorkflowSim (https:// 
github.com/WorkflowSim/) can support workflow preparation and workflow job 
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scheduler. DynamicCloudSim is a tool that can simulate the dynamic changes to the 
performance of virtual machines. Although DynamicCloudSim can support fault 
tolerance in some way, currently, it can only determine whether a task succeeds or fails. 

Therefore, none of the current tools can simulate cloud service reliability 
enhancement mechanism perfectly. For example, currently, the tools cannot trigger the 
host failure events or virtual machine failure events. But all this can be simulated by 
FTCloudSim. We will show the design of FTCloudSim in the next section. 

3 Design of FTCloudSim 

We will present the design of FTCloudSim in this section. 

3.1 System architecture 

As shown in Figure 2, FTCloudSim has added eight modules to CloudSim, which  
will be described in this section. The newly added function modules are divided into 
three types: fundamental functions, support for checkpoint and support for replication. 
Almost all the reliability enhancement methods are based on the exploitation of 
redundancy. Replication and checkpointing are two widely used basic service reliability 
enhancement mechanisms. FTCloudSim can support checkpointing- and replication-
based fault-tolerant mechanism, as of now. 

Figure 2 The framework of FTCloudSim 

 

3.2 Fundamental functions 

The fundamental functions of FTCloudSim include the following: 

1 Fat-tree data centre network construction. Although CloudSim supports the 
simulation of data centre network topologies, the user needs to construct the network 
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himself. The process is troublesome if the network is complex. The fat-tree data 
centre network (Al-Fares et al., 2008; Bilal et al., 2013) is a typical architecture of a 
current commodity data centre. Hence, we provide the functionality to construct a 
fat-tree data centre network automatically. The user only needs to set the port 
number in the configuration file. Figure 3 shows a fat-tree data centre network with 
four ports. 

2 Failure and repair event triggering. Failure events and repair events are triggered. 
The failure events can be generated according to some special distribution (Rausand 
and Høyland, 2004), Weibull distribution or exponential distribution, etc. The failure 
event data and the repair event data can be saved to a file so the experiment can be 
repeated. 

3 Results generation. This module outputs the simulation results to the user. In cloud 
computing environments, all resources are commercialised. Therefore, in addition to 
ensuring reliability, the method should reduce resource consumption based on data 
centre characteristics. Therefore, FTCloudSim will provide three types of metrics to 
highlight the advantages and shortcomings of each mechanism. The first metric type 
is the ability to enhance the reliability of cloud service. The metrics include the total 
execution time (total time the method takes to complete all tasks) and the average 
lost time (all time lost because of failure). The second metric is network resource 
usage. In addition to the total checkpoint image data transferred by all switches, the 
metric includes the total checkpoint image data transferred by the core switches, the 
aggregation switches and the edge switches. The third metric is storage resource 
usage. The metric includes the total disk usage (the disk usage for the storage of 
checkpoint image). 

Figure 3 Fat-tree data centre network (see online version for colours) 

 

3.3. Support for checkpoint 

Checkpoint is an important reliability enhancement mechanism. As shown in Figure 4, in 
checkpoint mechanism, the running state of a virtual machine is periodically saved as a 
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checkpoint image. The checkpoint image is stored in a persistent storage system. When a 
virtual machine fails, it can be restarted based on the checkpoint image. We have added 
two new modules to support checkpoint mechanism in CloudSim: checkpoint image 
generation and storage, and checkpoint-based cloudlet recovery. 

Figure 4 Checkpointing (see online version for colours) 

 

3.3.1 Checkpoint image generation and storage 

A checkpoint image is generated, transferred and stored periodically based on the 
checkpoint mechanism. This module is extensible. The user can design its own 
checkpoint schedule strategy by extending the default one. The strategy can determine 
when to generate the image, the content of the image and where to store the image. 

Figure 5 Sequence diagram: checkpoint image generation and storage 
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Figure 5 shows the sequence diagram of checkpoint image generation and storage. 

 CheckpointStorageIndex. An abstract class represents the checkpoint image storage 
strategy. It serves as an index and stores the checkpoint image storage node for each 
virtual machine. CheckpointStorageIndex contains an abstract storage node searching 
method. A user can replace the method with a new checkpoint image storage strategy. 

 Checkpoint-making scheduler. The class triggers the checkpoint-making event 
periodically. Based on the pre-defined rules, it alerts a host to save the current state 
of a special virtual machine as a checkpoint image. This module is extensible. The 
user can implement a new rule by extending the basic one. The rule can determine 
the time to make checkpoint, and the content of the checkpoint image. 

 DatacenterNode. All simentities that can send and receive network packets are all 
the subclass of DatacenterNode. The hosts, the storage nodes and the switches are all 
DatacenterNode. 

Firstly, the net data centre broker asks the checkpoint storage index to find a checkpoint 
image storage node for each virtual machine. When the checkpoint storage index receives 
the message, it searches an image storage node based on pre-defined rules. Before the 
execution, the scheduler asks the checkpoint-making scheduler to help remind the virtual 
machine execution state-saving time. When the state-saving time is up, the checkpoint-
making scheduler sends the host a message to remind him. When the host receives the 
message, it saves current execution state of the virtual machine as a checkpoint image. 
Then, the host generates a network packet which contains the checkpoint image, and 
sends the packet to the storage node. The storage node stores the checkpoint image to the 
database when receiving the packet. 

3.3.2 Checkpoint-based cloudlet recovery 

A task is resumed from the failure based on the latest available checkpoint image. If there 
is no accessible checkpoint image, it will fetch the necessary data from the central 
database and restart the interrupted task from the beginning. 

Figure 6 Sequence diagram: checkpoint-based recovery 

 



   

 

   

   
 

   

   

 

   

    FTCloudSim 355    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 6 shows the sequence diagram of checkpoint-based cloudlet recovery. 

 Data centre destroyer. The data centre destroyer destroys the data centre by breaking 
the hosts and virtual machines. The repair events of hosts and virtual machines are 
also triggered by the data centre destroyer. We add a bool variable to indicate 
whether a host or a virtual machine fails. 

 RecoveryScheduler. An abstract class represents the recovery strategy. Recovery 
schedule will recover the service from failure event based on pre-defined 
mechanism. This module is also extensible. A user can replace the method with a 
new recovery strategy. 

Firstly, the data centre destroyer breaks a host or a virtual machine. After the host or the 
virtual machine fails, the destroyer invokes recovery scheduler to recover the service. 
The recovery scheduler searches for a host with enough free resources for each 
interrupted virtual machine. Then, it asks the checkpoint storage index for the ID of the 
checkpoint image storage node. After receiving the information, the recovery scheduler 
sends a message containing the recovery host ID to the checkpoint image storage node. 
The checkpoint image storage node sends the related checkpoint image to the recovery 
host after receiving the message. Now, the recovery host recovers the service based on 
the checkpoint image. 

3.4 Support for replication 

Replication is a reliability enhancement mechanism that relies on the exploitation of 
redundancy. For example, the k-fault tolerance replication mechanism provides more 
virtual machines than needed to ensure that all applications can be maintained, while any 
k virtual machines fail at the same time. In the standby mechanism, several virtual 
machines synchronously or asynchronously process the same task. We have added two 
new modules to support the replication mechanism in CloudSim: replication-based 
virtual machine placement and replication-based cloudlet recovery. 

1 Replication-based virtual machine placement. To support replication in CloudSim, 
we have the extended class AppNetCloudlet. Information such as how many virtual 
machines are providing the application service, the location of the primary virtual 
machines and the location of the backup virtual machines are stored in this class. 

 A user can extend the virtual machine schedule mechanism of cloudsim to determine 
the physical location of each primary or backup virtual machine. We have just 
implemented a random location selection mechanism. A user can replace the module 
with a new mechanism. 

2 Replication-based cloudlet recovery. After the failure of a host server or a virtual 
machine, the affected cloudlets need to be reassigned to the backup virtual machines. 
Figure 7 shows the sequence diagram of replication-based cloudlet recovery. Firstly, 
the data centre destroyer breaks a host or a virtual machine. After the failure of the 
host or the virtual machine, the destroyer invokes the recovery scheduler to recover 
the service. The recovery scheduler fetches information of the backup of the virtual 
machine’s location from the class AppNetCloudlet. When the recovery scheduler 
receivers the information, it searches for the recovery host for each cloudlet. All 
cloudlets are re-submitted to their recovery hosts. This module is extensible. A user 
can implement a new mechanism to determine how to reassign the cloudlets. 
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Figure 7 Sequence diagram: replication-based image storage (see online version for colours) 

 

4 Experiments 

We present the new functions of FTCloudSim by using five replication-based cloud 
service reliability enhancement mechanisms in this section. We have implemented the 
FTCloudSim system and published the source code (http://sguangwang. com/ftcloudsim. 
html). The following sections first describe the experimental setting. Then, experimental 
results are discussed. 

4.1 Experimental set-up 

Now let us consider the following cloud service reliability enhancement background. In 
cloud computing, a service is deployed in the virtual machine. Because there are tens of 
thousands of service requests, the computing power of a single virtual machine is not 
strong enough to process the large quantity of service requests. Hence, the service is 
deployed in several virtual machines. Each virtual machine has a waiting queue. All tasks 
assigned to the virtual machine are inserted into the queue. 

In our experiment, we construct a 16-port fat-tree data centre network. The capacity 
of the core link and aggregation link is set as 10 Gbps, and the capacity of edge link is set 
as 1 Gbps. There are eight host servers in each subnet. Each host servers can host four 
virtual machines at the most. The transfer delay of the core switch, aggregation switch 
and edge switch are 1, 2 and 3 seconds, respectively. We generate 100 virtual machine 
failure events and 26,000 tasks. The task size is uniformly distributed between 5 and 10 
minutes. We multiple the task size by 6, and add the result to the submit time as the 
deadline. All tasks are data-processing tasks. The data size is set as 300 MB. We name 
the number of primary virtual machines as service concurrency. The service concurrency 
is normally distributed between 10 and 20. 
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We will demonstrate the capabilities of FTCloudSim by using the following five 
replication-based cloud service reliability enhancement mechanisms: 

 Cold-Backup. Suppose the service concurrency of a special service is m. After a host 
fails, the recovery scheduler searches a new virtual machine to provide the 
interrupted service. 

 Hot-Backup. Suppose the service concurrency of a special service is m. There are m 
number of services providing virtual machines and three hot standby virtual 
machines. After a virtual machine fails, all the tasks in its waiting queue are 
reassigned to a backup virtual machine. 

 Head-First. Suppose the service concurrency of a special service is m. There are m 
number of primary virtual machines and three hot standby virtual machines. All 
tasks are assigned to the (m + 3) service-providing virtual machine. If a virtual 
machine fails, the scheduler randomly selects a virtual machine for each task, and 
adds it to the head of the waiting queue. 

 Tail-First. Suppose the service concurrency of a special service is m. There are m 
number of primary virtual machines and three hot standby virtual machines. All 
tasks are assigned to the (m + 3) service-providing virtual machine. If a virtual 
machine fails, the scheduler randomly selects a virtual machine for each task, and 
adds it to the tail of the waiting queue. 

 Random Selection. Suppose the service concurrency of a special service is m. There 
are m number of primary virtual machines and three hot standby virtual machines. 
All tasks are assigned to the (m + 3) service-providing virtual machine. If a virtual 
machine fails, the scheduler randomly selects a virtual machine for each task and 
adds it to a random place in the waiting queue. 

To attack the failure of the host servers, the methods keep a copy of backup data on 
another host server in the same subnet. Therefore, the data can be re-fetched from the 
data backup server or the host where the failed virtual machine is placed. We will 
evaluate the five mechanisms by using the following five metrics, and we only count the 
packets related to data backup and data re-fetching. 

 Failure rate: the percentage of tasks that does not complete before deadline. 

 Root switch packets processed: the total size of network packets that has been 
transferred by the root switches. 

 Aggregation switch packets processed: the total size of network packets that has 
been transferred by the aggregation switches. 

 Edge switch packets processed: the total size of network packets that has been 
transferred by the edge switches. 

 Total packets processed: the total size of network packets that have been transferred 
by all the switches. 

In cloud computing environments, all resources are commercialised. The mechanisms 
need to reduce resource consumption when enhancing the cloud service reliability. The 
metrics related to packets processed can show the performance in network resource 
consumption. 
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4.2 Results 

The performance of all the mechanisms is studied. Figure 8 shows the performance of 
reliability enhancement. Figures 9–12 show the performance of network resource 
consumption, including the results of root switch packets processed, aggregation switch 
packets processed, edge switch packets processed and total packets processed. 

Figure 8 Failure rate 

 

Figure 9 Root switch packets processed (MB) 
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As shown in Figure 8, the failure rate of Cold-Backup is higher than that of all other 
mechanisms. Hot-Backup shows the strongest reliability enhancement ability. As shown 
in Figures 9–12, the core-level network resource consumption and the aggregation-level 
network resource consumption of Head-First, Tail-First and Random Selection are almost 
the same. Of all the mechanisms, Hot-Backup consumes the most core-level network 
resource and aggregation-level network the least resource. However, the edge-level 
network resource consumption of all the mechanisms is almost the same. All in all,  
Hot-Backup consumes more network resource than the other mechanisms. 

Figure 10 Aggregation switch packets processed (MB) 

 

Figure 11 Edge switch packets processed (MB) 
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Figure 12 Total packets processed (MB) 

 

Therefore, FTCloudSim can help highlight the advantages and shortcomings of the 
mechanisms. 

5 Conclusion 

In this paper, we presented a CloudSim-based system called FTCloudSim for modelling 
and simulation of cloud service reliability enhancement mechanism. FTCloudSim 
consists of the new features: (1) fat-tree data centre network construction, (2) failure 
event triggering, (3) repair event triggering, (4) checkpoint image generation and storage, 
(5) replication-based virtual machine placement, (6) checkpoint-based service recovery, 
(7) replication-based service recovery and (8) results generation. We present the new 
functions by using five cloud service reliability enhancement mechanisms. The results 
show that our system provides an easy-to-use reliability enhancement mechanism 
implementation interface. Furthermore, FTCloudSim can also show the advantages and 
shortcomings of each mechanism. Our future research involves providing easy-to-use 
user interface and visualisation results display. 
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