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Abstract—In 5G network, mobile edge computing plays a key
role in providing low access delay services. The placement of
edge servers not only determines the quality of services on the
user side, but also affects the profit of running a mobile edge
computing system. In this paper, we study how to properly place
edge servers so as to guarantee the access delay and maximize the
profit of edge providers. We first propose a profit model which
involves both access delay and energy consumption. In this model,
we take 5G User Plane Function (UPF) into consideration to
calculate access delay for the first time. Then we devise a particle
swarm optimization based algorithm to optimize the profit. In the
algorithm, we introduce a weight value q to guarantee the access
delay and assign base stations properly. Moreover, a service level
agreement is adopted to balance the trade-off between access
delay and energy consumption. We take advantage of our 5G
network emulator called mini5Gedge and dataset from Shanghai
Telecom to conduct massive experiments. The results show that
our algorithm stands out in terms of achieving the highest profit.

Index Terms—5G, Mobile Edge Computing, User Plane Func-
tion.

I. INTRODUCTION

A. Background & Motivation

MOBILE Edge Computing (MEC) is emerging as a key
enabler of 5G. By sinking computation resources to

the edge of the network, the long latency resulting from
long distance between user device and cloud data center is
mitigated. A typical mobile edge computing system is shown
in Fig. 1. In this system, edge servers are deployed at base
stations to form edge nodes. Base stations are assigned to edge
nodes in their proximity and forwarding service requests to
edge nodes. Applications benefit from the resources provided
by edge nodes to guarantee a high quality of service.

Deploying such a system to achieve the full promise of
mobile edge computing is quite a challenging work. On
the one hand, services running in edge servers, such as
VR/AR and Internet of Vehicles, are usually delay-sensitive
and computation-intensive. This requires edge servers to be as
close to users as possible. On the other hand, resources per
edge node is quite limited compared to the large data centers.
This means one edge node cannot cover a large area. Taking
all the above factors into consideration, deploying more edge
nodes becomes an inevitable choice to guarantee the quality
of services and prevent coverage holes [1] [2] in the city.

However, edge server placement is not simply choosing
locations for edge servers. It involves deploying computation
resources in the city and distributing these resources to users.
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Fig. 1. A mobile edge computing system.

Where to place edge server and how to assign user equipments
both matter in this process. A good placement scheme should
take multiple factors into consideration. First, the access delay
of user equipments should be guaranteed. Long access delay
will deteriorate quality of experience for applications such
as AR/VR. For Internet of Vehicles, long access delay can
even result in traffic accidents. Second, the energy consump-
tion of edge servers should be considered. As computation
infrastructures, edge servers are energy intensive [3]. In a
poor placement scheme, large number of servers working in
idle state will cause unnecessary energy waste. Third, edge
server overloading should be prevented. Areas with high user
density should place more edge servers to prevent service
failure resulting from edge servers getting overloaded.

Note that, when calculating delay of user equipments, the
architecture of mobile network should be considered. Gener-
ally, user data packets are encapsulated using General Packet
Radio Service (GPRS) Tunneling Protocol and transferred to
the core network in a GPRS Tunnelling Protocol for User
Plane (GTP-U) tunnel [4] [5]. Then the decapsulation is
conducted at packet data network gateway. After that, user
data packets can enter the Internet. In previous generations of
mobile communication, packet data network gateway locates
at the far away core network. Even if a user stand nearby
the edge server, his data traffic have to travel a long distance
to reach packet data network gateway and then go back to
the edge server. 5G network adopts a thorough control and
user plane separation and introduces UPF [6]. Being deployed
at the network edge, UPFs conduct packet processing and
traffic steering at the proximity of users. As a result, the
bandwidth efficiency is improved and the network congestion
can be mitigated. Besides, UPFs also serve as interconnection
point between mobile network and data network, protocol
data unit session anchor for mobility management and uplink
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classifier for packet routing [6] [7]. All these functionalities are
indispensable for service offloading in mobile edge computing.
That is, UPF is the inevitable node in the path of an offloading
traffic. If UPFs are not properly deployed, user equipments
will suffer from extra access delay. Therefore, the location of
UPF should be considered in edge server placement.

From the perspective of edge providers who deploy and run
an edge system, profitability is the first priority. The technical
keys to make the system profitable includes two parts: guaran-
teeing the access delay and reducing the energy consumption.
Both are important and should be jointly considered. Pursuing
extreme short delay will result in large scale edge server
placement, which brings tremendous cost as a result of extra
energy consumption. On the other hand, deploying too few
edge servers to reduce power consumption will inevitably
result in excessive access delay. As access delay is the key
performance indicator of an edge system, this will lead to the
loss of users. Therefore, the trade-off between reducing access
delay and cutting energy consumption should be balanced in
order to make a high profit.

In our previous work1, we study the energy saving of
edge servers in MEC [8]. However, as mentioned above,
only reducing energy consumption is not enough when it
comes to maximizing profit. Besides, it is also imprecise
to denote access delay as Euclidean Distance. To address
these weaknesses, in this paper, a Service Level Agreement
(SLA) model is added to balance the trade-off between access
delay and total energy consumption. Furthermore, network
topology together with the influence of UPF on access delay
are considered. Note that we only study the initial placement.
Edge server placement is completely different from service
deployments. Once placed, the location of edge server hardly
changes. Due to the high costs, dynamic deployment is not
applicable in edge server placement. The modification of
placement scheme mainly involves placing new edge servers
for system expansion, which is not within the scope of study.

B. Technical Challenges and Solutions

The first challenge lies in the joint consideration of network
topology and workload distribution. Edge server placement
is conducted according to the density of user requirements.
However, as mentioned above, access delay is not simply
determined by the distance between edge server and user
equipments. Instead, the location of UPF determines the path
of user traffic. Therefore, when calculating the access delay,
the relative location between the edge server and the UPF
needs to be considered. Adding that edge server should provide
enough computation resource for users in its coverage area,
solving the problem becomes more complicated. In order to
study the access delay with consideration of UPF, we build
mini5Gedge, an emulator that implemented functions of 5G
user plane. With mini5Gedge, the access delay in different
situations can be studied.

1This paper is an extension to a conference paper [8]. The earlier version of
this paper was presented at IEEE International Conference on Edge Comput-
ing and was published in its Proceedings(DOI: 10.1109/EDGE.2018.00016).

The second challenge is the scale of the problem. The
placement of edge servers is to choose potential locations
from thousands of base stations and assign base stations to
edge nodes. Such a large quantity of base stations means
that the search space for the problem will be enormous. For
example, the total number of possible solutions of choosing
20 placement locations from 1,000 base stations is more than
3.3×1041. The search space is so huge that it is quite difficult to
find the optimal solution. To solve the problem effectively, we
use Particle Swarm Optimization(PSO) algorithm to solve the
problem. We introduce a parameter q to assign base stations
more properly. To distinguish it from the original PSO, we
refer to it as QPSO in this paper.

The third challenge is how to balance the trade-off be-
tween access delay and energy consumption. Ideally, the edge
servers should be deployed as many as possible in order to
achieve short access delay. However, deploying too many edge
servers will result in huge energy consumption and a waste of
hardware resources. On the other hand, too few edge servers
cannot guarantee that the access delay is always good enough
in different places. In cloud data centers, idle servers can be
turned off to reduce energy consumption. However, as base
stations are faced with limited space to deploy devices, only
one edge server is placed at base station. Turning off the server
will result in service coverage hole in the area. Therefore, the
appropriate method is to optimize the placement scheme of
edge servers. To this end, in the initialization phase, we use
maximum delay, denoted as dmax, as a constraint and introduce
a weight value q to help assign base stations properly. Then
during the evolution of the algorithm, we use piece-wise SLA
to push algorithm to optimizing access delay in an appropriate
level.

C. Limitations of Prior Art

The key limitations of existing work concerning edge server
placement lie in two aspects: First, the impact of UPF is
neglected. Most previous work focus on optimizing access
delay [9]–[11] or total cost [12]–[14]. However, they do not
take 5G network topology into consideration. UPF is the key
user plane function in 5G and all user traffics get into data
network through it. Placing edge servers without considering
UPF and 5G network topology is impractical. Second, the
energy saving of edge servers is neglect. When it comes
to saving energy in MEC, most work focuses on reducing
energy consumption of user devices [15]–[19]. Server energy
consumption is neglected. As task offloading is the process of
transferring energy consumption from mobile devices to edge
nodes, energy consumption is concentrated to edge nodes.
How to reduce energy consumption of edge nodes as well
as guarantee the quality of service is of great importance.
Although saving energy for servers is extensively studied in
cloud data centers [20]–[23]. These work cannot be directly
applied to MEC. Because these approaches are irrelevant to
geographical distribution and are not constrained by short ac-
cess delay. While edge servers are placed at different locations
and faced with strict delay constraint.
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D. Contributions

This work studies the problem of edge server placement
in MEC from the perspective of edge providers. The main
contributions are as follows:

1) We have investigated the edge server placement problem
in 5G scenario. As far as we know, we are the first to
take the location of UPF in the 5G network topology
into consideration in edge server placement.

2) We have analyzed the importance of reducing access
delay and total energy consumption in edge server place-
ment problem and formulated it as a profit optimization
problem. We have introduced a piece-wise SLA in our
model to help balance the trade-off and a PSO based
algorithm has been proposed to solve the problem.

3) To study the influence of UPF and calculating the access
delay, we have built an emulator system which imple-
mented the user plane of 5G network with a complete
GTP-U protocol stack. In this system, user traffics are
guided by UPFs by means of building different GTP-U
tunnel between base stations and edge servers.

4) We have conducted experiments based on Shanghai
Telecom base station dataset and evaluated the perfor-
mance of our algorithm comparing with benchmark al-
gorithms. Our approach stands out in terms of achieving
the highest profit.

II. RELATED WORK

Edge placement problem (also called cloudlet placement)
is attracting more and more attention. Alejandro Santoyo-
Gonzalez and Cristina Cervello-Pastor [24] point out that
the placement scheme has a great effect on edge resource
efficiency. They propose a list of parameters to evaluate the
placement of edge servers in the emerging 5G scenario. Qiang
Fan et al. [25] minimize both cloudlet cost and end to end
delay cost with a Lagrangian heuristic algorithm. Feng Zeng
et al. [26] focus on minimizing total number of edge servers.
They use simulated annealing based approach and a greedy
based algorithm to solve the problem. Song Yang et al. [27]
point that placing cloudlet at each base station is energy costly
and optimize the placement scheme of cloudlets to reduce total
energy consumption while satisfying delay requirements. Man-
asvi G. et al. [28] leverage social network information to place
edge servers so that the bandwidth pressure can be relieved and
the access delay can be reduced. Guangming Cui et al. [29]
take network robustness of distributed MEC environment into
consideration. They propose an integer programming based
approach to place edge servers and improve the experience of
users.

The aforementioned work is effective, but can still be
improved. Although most of these work takes access delay
into consideration, either as the optimization objective or as a
constraint, they neglect the influence of UPF on access delay.
This will weaken the performance of algorithms in real-world
scenarios.

Most existing work on MEC mainly focuses on saving
energy for mobile devices by offloading tasks to edge servers
[15] [16] [17] [18] [19] [30]. However, reducing energy

consumption in edge infrastructures is of great importance,
too. Although little work in edge computing focus on energy
consumption of edge servers, saving energy has been studied
a lot in cloud computing. For example, Yi Wang et al. [20]
use mixed integer programming based algorithms to solve
large-scale virtual machine(VM) placement problems. They
formulate a non-linear power consumption model to obtain
physical machine energy consumption. Amandeep Kaur et
al. [21] try to reduce the active servers and unnecessary
migrations by proposing an algorithm based on Modified Best
Fit Decreasing Algorithm [22]. Most of the research mainly
focused on the efficiency of servers, but Hong Yao et al.
[23] concern on both the flow routing and VM placement. By
deploying VMs that frequently communicate with each other
on the same server, the energy consumption of data center
network could be reduced. They describe the problem by
adopting an Integer Liner Programming model and presented
a heuristic algorithm to solve it.

The researches above are effective and most of them for-
mulate the VM placement as a bin packing problem [31].
However, the placement of virtual machines in the same data
center mainly affects the utilization efficiency of hardware re-
sources but has little impact on network latency. While in edge
computing, access delay should be taken into consideration.
The geographical distribution also brings big challenges.

PSO [32] is widely used to solve optimization problem.
For example, Haitao Yuan et al. [33] use hybrid simulated
annealing PSO to minimize cost in cloud task scheduling.
Luan N. T. Huynh et al. [34] leverage the convergence and high
solution quality to computation offloading in heterogeneous
MEC networks. In [35], PSO is combined with genetic algo-
rithm to minimize total energy consumption of user devices
and edge servers. Besides, a novel self-organizing PSO [36] is
used to solve multiple objective optimization in 5G wireless
network. Some work focuses on improving the performance of
PSO. Zhiming Lv et al. [37] propose a surrogate-assisted PSO
to speed up the convergence. Yulian Cao et al. [38] put forward
a comprehensive learning PSO embedded with local search
to improve the global search capability and fast convergence
ability.

III. SYSTEM MODEL AND PROBLEM DEFINITIONS

A. System Model

In mobile edge computing (shown in Fig. 1), the network is
a three-tier architecture: cloud data center tier, edge tier and
user device tier. We focus on the edge tier, which consists
of n base stations. Among these base stations, there are m
base stations that will be chosen as the location to place edge
servers. They will act as edge nodes to provide computing
and storage resources to users in the proximity. Because edge
servers are placed at base stations where it is not suitable to
deploy computing clusters due to the limited space, each edge
node will place one edge server.

As is shown in Fig. 2, base stations and edge nodes are
geographically distributed in cities. Each edge node has a
serving area, which is represented by blocks in different colors.
User requests in this area are sent to this edge server. The
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Fig. 2. Distribution of base stations and edge nodes.

network topology of edge tier can be considered as an undi-
rected graph G = (B ∪ S, A), where B = {b1, . . . , bi, . . . , bn}
denotes the set of base stations. bi(i = 1,2,3, . . . ,n) denotes
base station i. S = {s1, . . . , sj, . . . , sm} denotes the set of
edge servers. sj( j = 1,2,3, . . . ,m) denotes edge server j.
Note that edge servers are all placed at base stations and
every base station is a potential location to place edge server.
A = {(bi, sj)|abi (sj) = 1,∀bi ∈ B, ∀sj ∈ S} represents the
set of links between base stations and edge servers, where
abi (sj) ∈ {0,1} denotes whether base station bi is assigned to
edge server sj . Let L = {(sj, bi)|lsj (bi) = 1,∀bi ∈ B, ∀sj ∈ S}
denotes the set of edge server locations, where lsj (bi) ∈ {0,1}
denotes whether edge server sj is placed at the location of base
station bi . A complete edge server placement scheme consists
of edge server location selection and base station assignment.
Therefore, an edge server placement scheme can be denoted
as Ω = (L, A).

B. Access Delay

In edge server placement, the location of edge server and the
assignment relationship mainly affect backhaul delay between
edge nodes and base stations. Therefore, in this study, the
delay refers to the backhaul delay. It is defined as the round-
trip time between two nodes. It is denoted as d(βi, βj),
where βi , βj denote the two ends of a communication link,
respectively. It could be a base station, an edge node or a UPF.
More specifically, when it comes to the access delay between
one base station and one edge server, it consists of two parts:
the delay from base station to UPF and the delay from UPF
to edge server. Therefore, the access delay of a user request
offloaded to an edge server is defined as follows:

d(sj, bi) = min(d(sj,uk) + d(uk, bi)) (∀k,1 ≤ k ≤ r), (1)

where uk denotes UPF k(k = 1,2,3, . . .) and r is the total
number of UPF. That is, the access delay of a user request
equals to the access delay to the edge node via the UPF with
the lowest access delay.

C. Energy Consumption

There are many factors that affect the energy consumption
of a server, such as the state of CPU, memory, hard disk,
network card and so on. Among these factors, CPU is the most

TABLE I
NOTATION TABLE

Notation Definition/Description
n Total number of base stations, (n = 1,2,3, . . .)
m Total number of edge servers, (m = 1,2,3, . . .)
r Total number of UPF, (r = 1,2,3, . . .)
bi Base station i (i = 1,2,3, . . . ,n)
sj Edge server j ( j = 1,2,3, . . . ,m)
uk UPF k (k = 1,2,3, . . . ,r)
B The set of base stations. B = {b1, . . . ,

bi, . . . , bn}
S The set of edge servers. S = {s1, . . . ,

sj, . . . , sm}
wbi (t) Workload of bi at time t
wsj (t) Workload of sj at time t
wmax The maximum workload of edge server

lsj (bi) Whether edge server sj is placed at the loca-
tion of base station bi

abi (sj) Whether base station bi is assigned to edge
server sj

d(βi, βj) The delay between βi and βj
dmax The maximum acceptable access delay
dideal The maximum ideal access delay
P Total profit of one edge server placement

scheme
N Population size of particle swarm in the algo-

rithm
T The maximum iteration number of our algo-

rithm

important energy-consuming device [39]. Besides, according
to [40] [41], the power consumption of a server can be
accurately described by a liner relationship between the power
consumption and the CPU utilization efficiency. Therefore,
the CPU utilization efficiency is usually used to represent the
utilization efficiency of server resources [42] [43], and we can
indirectly obtain the server’s energy consumption according to
the CPU utilization efficiency.

There is an important fact that cannot be neglected: the basic
energy consumption of a server in idle state account for more
than 60% of the energy consumption of a server running in full
state [44] [39]. This means a great deal of energy is wasted
when servers work in low efficiency or idle state. Therefore, to
reduce energy consumption in edge computing, the number of
servers working in low efficiency should be reduced. To this
end, the edge server placement scheme should be optimized
so that the efficiency of edge servers could be improved.

Given the facts above, we can model the server energy
consumption as follows:

Ej =

∫ t2

t1

Pj(t)dt, (2)

Pj(t) = Pidle + (Pmax − Pidle) × µj(t), (3)

µj(t) =
wsj (t)

wmax
, (4)
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wsj (t) =
n∑
i=1

abi (sj)wbi (t). (5)

where Eq. 2 denotes the energy consumption of sj during
the time period from t1 to t2 (t1 < t2). Ej denotes the energy
consumption of edge server sj , Pj(t) denotes the power of sj
at time t. Pidle denotes the power when a server works in idle
state, Pmax is the power of a server which is working in full
state. µj(t) denotes the utilization efficiency of sj . The value
of µj(t) can be calculated from Eq. 4 where wsj (t) denotes the
workload of sj at time t and wmax represents the upper limit of
an edge server’s work load. Then, the total energy consumption
of all the edge servers can be calculated as follows:

Etotal =

m∑
j=1

Ej . (6)

Accordingly, the total cost of an edge provider brought by
energy consumption is defined as follows:

mcost = p′ × Etotal, (7)

where mcost denotes the total cost of energy and p′ denotes
the price of electricity.

D. SLA Model

SLA establishes an agreement between service providers
and its users. The terms in an SLA must be fulfilled when
service providers provide services. In our model, we adopt
an SLA with linear punishment [45]. Two parameters are
introduced, i.e. dideal and dmax (dideal < dmax). When the
access delay is less than dideal, the quality of service is good.
Edge service provider will get a full payment. However, if
access delay is larger than dideal, the quality of service starts
to deteriorate. As a result, the payment will reduce linearly as
a punishment. If access delay exceeds dmax, the service quality
is totally unacceptable and the payment is reduced to zero. The
value of dideal and dmax are determined by the requirement of
quality of service. Accordingly, the payment in SLA can be
formulated as follows:

p
(
sj, bi

)
=

pmax d
(
sj, bi

)
≤ dideal

pmax−γ
(
d

(
sj, bi

)
− dideal

)
dideal < d

(
sj, bi

)
≤ dmax,

0 d
(
sj, bi

)
> dmax

(8)

γ =
pmax

dmax − dideal
, (9)

where p(sj, bi) denotes the payment of user request which is
invoked from bi and served at sj . pmax denotes the payment
when the requirement of access delay is fulfilled, that is, the
access delay d(sj, bi) is less than dideal. If the access delay
d(sj, bi) exceeds dideal, the payment decreases as a punishment
with a rate of γ. When d(sj, bi) becomes larger than dmax,
the service is not usable at all and, as a result, users will

pay nothing to edge providers. Then, the total income can be
defined as follows:

min =

m∑
j=1

n∑
i=1

p(sj, bi) × abi (sj), (10)

where min denotes the total income of edge providers.

E. Problem Statement

In mobile edge computing, edge providers deploy resources
at the edge of network and provide services to users. If edge
providers want to make more profit, they have to cut cost and
increase income. More specifically, if an edge provider wants
to make more profit, he has to cut energy consumption to
reduce expenditure and provide edge service with lower access
delay to increase income. Because energy expenditure has
become one of the most significant expenses and sometimes
even exceeding hardware cost [39], we mainly consider energy
expense as the operation cost. The total profit, denoted as P,
is calculated as follows:

P = min − mcost. (11)

According to the mentions above, the problem is formulated
as follows:

Maximize P, (12)

subject to

m∑
j=1

abi (sj) = 1 (∀i,1 ≤ i ≤ n), (13)

n∑
i=1

lsj (bi) = 1 (∀ j,1 ≤ j ≤ m), (14)

d(sj, bi) ≤ dmax, (15)

wsj (t) ≤ wmax, (16)

where abi (sj) ∈ {0,1} denotes whether base station bi is
assigned to edge server sj . lsj (bi) ∈ {0,1} denotes whether
edge server sj is placed at the location of base station bi . Eq.
15 indicates that the access delay between a base station and
its assigned edge node is limited by dmax. Eq. 16 indicates
that the workload of each edge server should be no more than
the upper limit, which is denoted as wmax. Above all, the edge
server placement problem can be formally stated as follows:

1) find an optimal edge server placement solution Ω =
(L, A),

2) maximizing the total profit in Eq. 11,
3) subject to constraints in Eqs. 13-16.

Theorem 1. The profit-aware edge server placement problem
is NP-Hard.

Proof. We prove the NP-hardness of profit-aware edge server
placement problem by a reduction from set cover problem to
it. For a given universe set Z = {z1, z2, ..., zn}, a collection of
subsets {S1,S2, ...,Sm} of Z and a size constraint K , the set
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cover problem is to find a collection C that satisfying |C | < K
and

⋃
i⊆C Si = Z.

For each zi in Z, we construct a one-to-one mapping that
map zi to a base station bi . Similarly, we construct a one-to-
one mapping that map a subset Sj of Z to a coverage area of
edge server. Only one edge server is placed in this coverage
area and for all ui ∈ Sj , the corresponding bi will be assigned
to the edge server in this area. The collection size constraint
K is set to the total number of base stations |B |. We can see
that a potential solution to the edge server placement problem
is also a cover of the universe set Z. Since set cover problem
is NP-complete [46], the profit-aware edge server placement
problem is NP-hard.

�

IV. EDGE SERVER PLACEMENT

In order to solve the problem efficiently, we propose an
efficient heuristic algorithm based on PSO. In the following,
we will discuss in details.

A. Encoding Scheme

An edge server placement scheme includes edge server
placement and base station assignment. Therefore, an encoding
scheme should include both of the two relationships. Consid-
ering assigning base stations to an edge node is a one-to-many
mapping relationship and, as mentioned above all base stations
are potential placement locations. A two-dimensional matrix is
adopted as the encoding scheme. Leveraging such an encoding
scheme brings the following benefits. First, edge server loca-
tions are easy to find. Second, the base station assignments are
clearly demonstrated. Third, constraint violation judgements
are simplified.

TABLE II
ENCODING SCHEME EXAMPLE

1 2 3 4 5 ... n
1 X
2 X
3 X
4 X
5 X
...
n X

For an edge server placement problem with n base stations,
the encoding scheme is an n × n matrix, denoted as M . Each
row of the matrix represents a base station and each column
represents a potential edge server placement location. Let
M[x][y] (1 ≤ x, y ≤ n) denotes the data located at row x
column y in the matrix. If base station bi is assigned to the
edge server placed at base station bj , M[i][ j] will be marked
and vice versa. Let’s take Table. II as an example. The mark
at M[1][1] means base station b1 is assigned to the edge
server placed at base station b1. The two marks at M[2][3]
and M[3][3] means base station b2 and b3 are assigned to the
edge server placed at base station b3. Given such an encoding
matrix, it is also quite simple to find edge server locations.
If M[x][x] is marked, it means base station bx is chosen to
place an edge server.

Because of the constraints Eq. 13 and Eq. 14, placing marks
in the matrix should observe the following rules:

• Every row of the matrix must have one mark and at most
one mark.

• If column x(1 ≤ x ≤ n) has one or more marks, column
x row x must be marked.

In the evolution phase of the algorithm, the position of a
particle is updated in every iteration. The updating operation
are very likely to introduce constraint violations. With the
help of the encoding scheme, constraint violations can be
easily found and eliminated through a deleting and refilling
operation. The deleting operation has two steps: 1) Check the
encoding row by row. If constraint violations are found, clear
the row; 2) If the deleted mark is on the diagonal, clear all
the marks in the same column. This is because an edge server
is deleted, its assignment relationship with other base stations
become invalid. After the two-step delete, only valid marks
are remained. Then follows the refilling operation: 1) Check
the encoding row by row and find the empty ones; 2) If there
is a nearby edge server that can be assigned to, assign this
base station to it and mark this relationship in the encoding;
3) If no valid nearby edge server is available, place an edge
server at this base station and mark it in the encoding.

B. Edge Server Placement Algorithm

We solve the edge server placement problem based on PSO.
PSO has such advantages as faster execution, robustness to
control parameters and easy to implement [47]. According
to [48], PSO needs less computational effort than genetic
algorithm to arrive at the same high quality solutions and,
when it comes to computational efficiency, PSO outperforms
genetic algorithm with a 99% confidence level. In our edge
server placement algorithm, the formulas of PSO are modified
as follows:

V t+1
i = p1iV t

i ⊕ p2i(X t
i−lbest � X t

i ) ⊕ p3i(X t
gbest � X t

i ), (17)

M t+1
i = V t+1

i ⊗ (p1iM t
i ⊕ p2iM t

i−lbest ⊕ p3iM t
gbest), (18)

where Eq. 17 denotes the update of particle velocity and Eq. 18
denotes the update of encoding scheme. The most important
parameters are M t

i , X t
i and V t

i . M t
i is the position of particle i

at time slot t. It denotes a possible edge server placement
solution. The definition is given in Section IV-A. M t

i−lbest
records the local historical value of M t

i that has the highest
profit. M t

gbest records the global historical value of all the M t
i

which has the highest profit.
X t
i = (x

t
i1, x

t
i2, ..., x

t
in) is defined as an n-bit binary vector,

where n is the total number of base stations. Each bit rep-
resents whether the corresponding base station is chosen to
deploy an edge server. X t

i can be easily got from the diagonal
line of M t

i . X t
i−lbest and X t

gbest are got from M t
i−lbest and M t

gbest,
respectively.

V t
i denotes the velocity of particle i at time slot t. It is

defined as an n-bit binary vector V t
i = (v

t
i1, v

t
i2, ..., v

t
in). If the

bit vt
ik
= 1(1 ≤ k ≤ n), the k − th column of M t

i may be
changed. V t+1

i is updated from V t
i according to the following

steps. First, calculate (X t
ilbest � X t

i ) and (X t
gbest � X t

i ). The �
operator is to find the difference between two operands. It
is conducted by doing exclusive OR bit by bit. For example,
(1,0,1,0)� (1,1,0,0) = (0,1,1,0). Then, V t

i is updated using ⊕
operator. The ⊕ operator divides the formula into three parts.
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Each part has a probability coefficient pi , which are defined
as follows:

p1i =
Pi

Pi + Pi−lbest + Pgbest
, (19)

p2i =
Pi−lbest

Pi + Pi−lbest + Pgbest
, (20)

p3i =
Pgbest

Pi + Pi−lbest + Pgbest
, (21)

where Pi is the total profit of M t
i , Pi−lbest is the total profit

of M t
i−lbest and Pgbest is the total profit of M t

gbest. It is obvious
that the more profit, the greater the value of its probability
coefficient. The ⊕ operator updates V t

i bit by bit using roulette
strategy. Take (1, η,0) = p1i(1,a,0) ⊕ p2i(1, b,0) ⊕ p3i(1, c,0) as
an example. η in the equation is an uncertain bit:

η =


a, 0 ≤ rand ≤ p1i
b, p1i < rand ≤ p1i + p2i
c, p1i + p2i < rand ≤ 1

, (22)

where the value of a, b, c is 0 or 1 and rand is a random
number between 0 and 1. Note that pi1 + pi2 + pi3 = 1.

With an updated V t+1
i , M t

i is updated next. Operator ⊗
defines the particle position updating operation. The operation
has three steps. 1) Decide which column to update. For
V t+1
i = (vt+1

i1 , vt+1
i2 , ..., vt+1

in ), if vt+1
ik
= 1, the k-th column of M t

i
will be updated. 2) Update the encoding matrix. The chosen
columns of M t

i will be replaced by the corresponding column
calculated from (p1iM t

i ⊕p2iMi−lbest⊕p3iMgbest). The ⊕ here is
the same as we mentioned before. 3) Adjust the coding matrix
so that it does not violate the constraints.

Note that, edge server placement includes selecting edge
server locations and base station assignment. In the process of
base station assignment, we introduce a weight value q as a
guidance.

q =
dmax

d(sj, bi)
+

wbi∑
bk ∈C(sj ) wbk

, (23)

where dmax is the access delay constraint. d(sj, bi) denotes the
access delay between sj and bi . wbi =

∫ t2
t1

wbi (t) dt denotes
the accumulative workload of bi .

∑
bk ∈C(sj ) wbk

calculates the
total accumulative workload of all base stations within the
coverage of sj , where C(sj) denotes the set of base stations
within the coverage of sj . Base stations that are closer to edge
nodes or have a larger workload will have a higher q value.
That is, it will have a higher priority to be assigned. This will
prevent following awkward situations: 1) When assign base
stations with heavy workload, the nearest edge server does
not have enough resources to support the assignment even if
there is still quite a few resources left in the edge server.
Because its computation resources have already been occupied
to serve large number of base stations with light workload; 2)
Faraway base stations within the coverage are assigned to the
edge server while base stations at core of the serving area have
no choice but forwarding service requests to other edge nodes.
Both situations fail to allocate resources properly, which will
inevitably lead to poor access delay and energy waste.

By introducing q value based initialization and the two-
dimension encoding scheme, the edge server placement algo-
rithm runs as Algorithm 1. In order to distinguish it from the
original PSO, we use QPSO to refer to our modified algorithm
in the following paragraphs.

Algorithm 1: Edge Server Placement
Input: data set of base stations; dmax of edge server;

population size of particle swarm N; algorithm
iteration number T ;

Output: edge server placement scheme
1 Initialize the N particles;
2 Initialize M t

i−lbest of all particles;
3 Initialize M t

gbest;
4 while t < T do
5 foreach particle of total N particles do
6 update velocity of each particle according to

Eq. 17;
7 update position of each particle according to

Eq. 18;
8 find constraint violations;
9 eliminate constraint violations via deleting and

refilling;

10 update M t+1
i−lbest;

11 update M t+1
gbest;

12 t ← t +1;

13 return MTgbest.

V. PERFORMANCE EVALUATION
In this section, we conduct various experiments to evaluate

the performance of the profit-aware edge server placement
algorithm and compare it with other algorithms.

A. Experiment Setup
The experiment is conducted by simulating edge server

placement in the whole city of Shanghai. We use Shanghai
Telecom base station dataset2 to build a simulation environ-
ment close to reality. The dataset consists of the locations of
total 3233 base stations and the Internet access log of users.
If a user gets access to the Internet, we can learn when it
starts, when it ends and which base station the user connects
to. Table. III is an example of the processed data. All base
stations in the table are selected randomly.

We use this dataset as an input to provide temporal and
spatial distribution of user workload. The dataset records the
operation status of base stations in Shanghai for 15 consecutive
days. So we mainly study the total energy consumption and
working state of all the base stations in a period of 15 days. In
addition, considering the fact that it is almost impossible to get
the real-time CPU utilization efficiency at each moment, we
choose working minutes as the metric of workload. Therefore,
the CPU utilization efficiency can be calculated indirectly, and
we can get the total energy consumption of one edge server
in 15 days. Then, we generate the network topology based on
base station locations provided in the dataset. At first, we link
adjacent base stations to form one-hop relationships. Then we
use Floyd algorithm [49] to generate the whole topology.

However, having the topology is not enough. We cannot
get access delay for each user request. To tackle this problem,
we build an emulator called mini5Gedge to acquire access
delay of a link between user equipments and edge servers

2http://sguangwang.com/TelecomDataset.html
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TABLE III
INFORMATION OF A PART OF BASE STATIONS

ID User number Latitude Longitude Workload(min)

7 5 31.2377 121.3825 5556
16 165 31.4837 121.2748 215632

193 367 31.0154 121.1548 454070
446 212 31.2815 121.5582 252115
593 164 31.3068 121.5196 209063
677 286 31.3011 121.1778 378484
753 202 31.4534 121.2564 253360
833 10 31.2567 121.4387 13990
1005 24 31.3971 121.5077 32982
1141 17 31.1860 121.4487 17978
1325 53 31.2479 121.5134 67468

through UPF. As is shown in Fig. 3, we implement user plane
network functions to enable a real connection between user
equipments and edge servers. In this emulator, the wireless
communications between user equipments and radio access
network (RAN) are replaced by Ethernet connections. Since
we mainly focus on the backhaul links instead of the wireless
connection, this simplification can help us prevent the compli-
cation brought by the wireless communication protocol stack.
When a user equipment wants to get access to the edge server,
the emulator will build up a GTP-U tunnel for it [4]. We use
I-UPF and A-UPF to refer to UPFs playing different role in a
tunnel. The I-UPF act as an intermediate node in the process
of building up a tunnel. It serves as an uplink classifier and
forward traffics to a proper A-UPF. The A-UPF serves as a
packet data unit session anchor. The tunnel starts from RAN,
passing through I-UPF and end at A-UPF. We leverage this
emulator to get the access delay by measuring round-trip time
under different circumstances.

We designed two experiments: 1) keep the number of base
stations fixed at 1100 while change the dmax of edge server
from 2 ms to 8 ms; 2) keep the dmax of edge server equals
5 ms while change the total number of base stations from
300 to 1300. In order to simplify the experiment, we set
dideal = 0.5dmax. The initial population size in our PSO based
algorithms is set to 40 [50], and the maximum iteration number
is set to 400 according to our another experiment in Section
V-E.

We choose Dell PowerEdge R730 as the edge server. It has
an Intel Xeon E5-2620 v4 CPU. The main frequency of CPU is
2.1 GHz and the RAM is 32 GB. Its full state power is 495W.
According to the survey result in [39], the idle power of edge
server account for 60% of the full state power. The electricity
price3 is 0.925 RMB per kWh. The maximum payment pmax
is 0.0016 RMB per minute according to the price of Tencent
Cloud S14.
B. Benchmark Algorithms

We compare our QPSO with other placement algorithms in
terms of total profit, average access delay, energy consumption
and hardware resource utilization efficiency. The algorithms
are as follows:

1) TopFirst. In every loop, base station with the heaviest
workload is selected to place edge server. Base stations
in the coverage area satisfying constraints are assigned

3http://fgw.sh.gov.cn/jgl/20190329/0025-35583.html
4https://buy.cloud.tencent.com/price/cvm/overview

…
…

RAN1-1 RAN1-2 RAN1-k

I-UPFA-UPF

Edge Server
Switch

Fig. 3. System design of mini5Gedge.

to it. This process is repeated until all the base stations
are assigned.

2) Random. This algorithm is to select base stations ran-
domly to place edge servers and assign base stations
satisfying constraints to them.

3) Greedy. In the first iteration, base stations merge with
its nearest neighbors to form a group. Then the groups
merge with its nearest group to form larger groups in
the following iterations. The total workload of a group
is limited by wmax, and the base station with the lowest
delay between other base stations in the group will be
chosen to place an edge server.

4) PSO. The origin PSO [32] without using q value.

C. Performance with Varying Maximum Delay

Figs. 4-7 show the performance of algorithms when dmax
changes from 2 ms to 8 ms. The total number of base stations
is 1100. For PSO and QPSO, the population size N = 40. The
maximum iteration number T = 400.

1) Total Profit: As is shown in Fig. 4, QPSO achieves the
highest profit in most cases. When dmax = 2 ms, only PSO
and QPSO has a positive profit value. Greedy, Random and
TopFirst are even in deficit. The low profit mainly result from
high energy consumption(shown in Fig. 6). dmax = 2 ms is
such a strict constraint that all the algorithms have no choice
but deploy far more edge servers. The large amount of energy
consumption lead to heavy operation cost. As dmax increases,
all algorithms witness a rapidly growing profit. Since dmax =
4 ms, QPSO earns the highest profit. Then follows Greedy
and PSO. TopFirst has the lowest profit. When dmax is larger
than 5 ms, the growth nearly stops. In this stage, QPSO earns
a profit on average 17.79% larger than Greedy and 27.09%
larger than PSO. TopFirst has the lowest profit. Its profit is on
average only 54.70% of QPSO’s.

2) Access Delay: Figs. 5 shows average access delay of
all algorithms as dmax increases. In general, QPSO achieves
the lowest access delay in most cases. Besides, as dmax gets
larger, the access delay of algorithms all increases and the
gap between algorithms becomes larger. When dmax = 2 ms,
the average access delay of QPSO is 16.12%, 10.02%, 5.47%
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Fig. 4. Total profit for the edge server placement with respect to the dmax of
edge server.
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Fig. 5. Average access delay for the edge server placement with respect to the
dmax of edge server.
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Fig. 6. Energy consumption for the edge server placement with respect to the
dmax of edge server.
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Fig. 7. Average resource utilization efficiency for the edge server placement
with respect to the dmax of edge server.

less than that of Random, TopFirst and Greedy, respectively.
Compared with PSO, the access delay of QPSO is only 1.36%
more than that of PSO. However, when dmax = 8 ms, QPSO
has far less access delay than other algorithms. Its average
access delay is 25.88% less than that of Greedy(having the
second lowest delay) and 50.35% less than TopFirst(having
the largest delay). In the process of dmax increasing from 2 ms
to 8 ms, the coverage area of one edge server gets larger.
Greedy follows a low delay first strategy and achieves the
second lowest access delay. TopFirst place edge servers at base
stations with the heaviest workload, which does not necessarily
have low access delay with UPF. Neither QPSO nor PSO
optimizes access delay directly. However, with the guidance of
q value, QPSO assigns base stations to edge servers in a more
proper way. This prevents base stations being assigned to a
further edge server because of insufficient computing resources
left at the nearest edge server.

3) Total Energy Consumption: As is shown in Fig. 6, with
dmax = 2 ms all algorithms have tremendous amount of aver-
age energy consumption, ranging from 49497.78 kWh (PSO)
to 69111.66 kWh (Random). Then, a rapid drop happens.
The energy consumption of five algorithms reduces at least
70.79% (QPSO) from dmax = 2 ms to dmax = 3 ms. As
dmax becomes larger than 4 ms, the reduction of total energy
consumption slow down. Because Greedy follows a delay first
strategy, it has the highest energy consumption. QPSO and
PSO are the top two energy-saving algorithms. In the range
from dmax = 4 ms to dmax = 8 ms, QPSO consumes on average
31.70% less energy than Greedy. A similar tendency occurs
in Fig. 7, where average resource utilization efficiency goes
up sharply from dmax = 2 ms to dmax = 4 ms and slows down
afterwards. This is because when dmax is less than 4 ms, the

number of base stations assigned to one edge server is small
because the size of coverage area is limited by dmax. Each
edge server can only serve a few base stations in a small area,
even if the total workload of this area is far away from the
maximum workload of the edge server. Large number of edge
servers are placed to prevent coverage holes even though they
work in low efficiency. However, when dmax gets larger than
4 ms, the resource utilization efficiency approaches the upper
limit. The reduction of edge server number slows down greatly.

4) Summary: In summary, QPSO stands out in terms of
making the highest profit. It also achieves the lowest access
delay. Although Greedy has the second shortest access delay,
it is at the cost of a huge extra energy consumption. PSO
succeeds in reducing energy consumption but fails to guaran-
tee low access delay. By comparing QPSO with benchmark
algorithms, it is obvious that QPSO has a better trade off
between energy consumption and access delay. As a result,
only QPSO keeps access delay less than dideal when dmax is
larger than 5 ms. This means only QPSO can acquire full
payment according to SLA.

D. Performance with Varying Number of Base Stations

Figs. 8-11 show the performance of algorithms when the
total number of base stations changes from 300 to 1300. The
objective is to evaluate the performance of algorithms under
different total workload of the city. In this experiment, the
dmax is 5 ms. For PSO and QPSO, the initial population size
N = 40. The maximum iteration number T = 400.

1) Total Profit: Fig. 8 shows the performances in terms
of profit. QPSO, Greedy and PSO earn far more profit than
Random and TopFirst and the gap becomes larger as the
number of base stations increases. The profit of QPSO is
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Fig. 8. Total profit for the edge server placement with respect to the number
of base stations.

300 500 700 900 1100 1300
Number of Base Stations

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Av
er

ag
e 

Ac
ce

ss
 D

el
ay

 (m
s)

QPSO
PSO

Greedy
Random

TopFirst

Fig. 9. Average access delay for the edge server placement with respect to the
number of base stations.
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Fig. 10. Energy consumption for the edge server placement with respect to the
number of base stations.
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Fig. 11. Average resource utilization efficiency for the edge server placement
with respect to the number of base stations.

on average 73.16% more than that of Random and 94.08%
more than that TopFirst. For the top three algorithms, QPSO
performs the best, then follows Greedy. The profit of QPSO
is on average 20.28% more than that of Greedy and 30.74%
more than that of PSO. The total profit of the five algorithms
rises linearly. This is because the utilization efficiency per
edge server changes very little (as shown in Fig. 11), the
extra workload brought by the growth of base station numbers
mainly result in the increase of total edge server number.

2) Access Delay: As for access delay(shown in Fig. 9),
when total number of base station increases, the performance
of Random almost keeps unchanged while PSO and TopFirst
witness a slight increase. The access delay of Greedy goes
down slightly. QPSO keeps access delay under a pretty low
level, on average 11.55% less than Greedy and 28.08% less
than PSO. The reasons for such a delay change are as
follows. TopFirst place edge servers at base stations with the
heaviest workload. However, these base stations may have a
large access delay with the nearest UPF. Therefore, TopFirst
performs even worse than Random. PSO optimizes the access
delay indirectly during the optimization of total profit. Greedy
chooses base station with the lowest access delay in every
iteration, but neglect the workload difference between base
stations. Only QPSO leverages a q value to jointly consider
access delay and total workload constraints and achieve the
lowest access delay.

3) Total Energy Consumption: Figs. 10 shows how total
energy consumption changes. As number of base stations
increases, the total energy consumption of five algorithms
all go up. That is because the increasing base stations bring

more workload. In this process, PSO has the highest average
total energy consumption. Then follows Greedy, with only
a slight gap. QPSO keeps the lowest energy consumption,
on average 28.08% less than PSO and 31.69% less than
Greedy. The reason why QPSO saves more energy lies in
resource utilization efficiency. As is shown in Fig. 11, with
different number of base stations, QPSO keeps the highest
resource utilization efficiency. As a result, it can prevent edge
servers working in idle state and reduce total number of edge
server, which contributes to energy saving. It is worth noting
that the standard deviation of PSO is far greater than other
algorithms. This is because the origin PSO only optimize total
profit. Although its total profit converges well, the algorithm
achieves the optimization by pursuing either extreme low
access delay or extreme low energy consumption which result
in the significant variation on energy consumption. On the
contrary, QPSO achieves a better trade-off and, as a result,
has the highest total profit.

4) Summary: QPSO performs best in terms of increasing
profit. It keeps the best trade-off between access delay re-
duction and energy saving. By jointly consider access delay
and workload distribution, it achieves the lowest access delay.
Note that, QPSO is the only one algorithm that keep the
access delay within dideal. Thus, it has full payment in SLA.
In addition, it can find an edge server placement scheme with
the lowest energy consumption by means of optimizing base
station assignment scheme to improve utilization ratio of edge
servers.
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Fig. 12. Total profit for edge server placement with respect to iteration
number.

E. Study on Iteration Number

In order to find out the influence of the maximum iteration
number on QPSO and PSO, we conducted another experiment.
In this experiment, we record the total profit of every iteration
with following parameters: dmax = 5 ms and total base station
number = 1100.

The result of the experiment is shown in Fig. 12. To make
it clearer how the total profit of QPSO changes with different
iteration number, we enlarge the line of QPSO when iteration
number is less than 500. The total profit of both QPSO and
PSO goes up quickly at first and the increase slows down
gradually after the iteration number reaches 200. Finally, it
remains almost unchanged when the iteration number is larger
than 400. That is, the algorithms have converged with 400
iterations. Based on the result, the maximum iteration number
is set to 400 in Section V-C and Section V-D.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of edge server placement
from the perspective of edge providers. First, we propose an
edge server placement model, which takes UPF into consid-
eration in the access delay model for the first time. Then, we
introduce SLA model to help balance the trade-off between
access delay and energy consumption. We put forward QPSO,
which introduces parameter q, to help assign base stations
to edge nodes in a more reasonable way. The performance of
our algorithm is evaluated by a series of experiments based on
Shanghai Telecom base station dataset. The experiment results
show that QPSO can increase more than 17.79% profit while
achieve a good trade-off between access delay and energy
consumption.

This work is only the first step of edge deployment. In
future work, we will study budget optimization which includes
construction cost, server purchasing price, energy cost and
so on. In addition, we will study the dynamic management
of edge resources. As the coverage area of one edge node
is not big, the service requirement in this area is relatively
dynamic. First, the service requirements of users change over
time. Second, user movement makes it hard to provide service
by only one edge node. Therefore, the dynamic deployment
and the migration of services are new challenges in MEC. We
will focus on these problems in future work.
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