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Abstract—Recently, increasing investments in satellite-related
technologies make the Low Earth Orbit (LEO) satellite constel-
lation a strong complement to terrestrial networks. To mitigate
the limitations of the traditional satellite constellation ”bent-
pipe” architecture, Satellite Edge Computing (SEC) has been
proposed by placing computing resources at the LEO satellite
constellation. Most existing works focus on space-air-ground
integrated network architecture and SEC computing framework.
Beyond these works, we are the first to investigate how to
efficiently deploy services on the SEC nodes to realize robustness
aware service coverage with constrained resources. Facing the
challenges of spatial-temporal system dynamics and service
coverage-robustness conflict, we propose a novel online service
placement algorithm with a theoretical performance guarantee by
leveraging Lyapunov optimization and Gibbs sampling. Extensive
simulation results show that our algorithm can improve the
service coverage by 4.3× compared with the baseline.

Index Terms—Space-air-ground integrated networks, satellite
edge computing, service coverage.

I. INTRODUCTION

W ITH the coming of the Internet of Things (IoT) era,
massive devices all over the world need to be con-

nected in the future. It is estimated that there will be more than
30 billion IoT devices deployed worldwide by the end of 2025
[1]. However, the terrestrial network covers only about 20%
of the total land area [2]. Moreover, the terrestrial network
is vulnerable to natural disasters, such as floods, earthquakes,
tsunamis. An emerging technology, the Low Earth Orbit (LEO)
satellite constellation can provide ubiquitous access. Com-
mercial efforts such as OneWeb, SpaceX Starlink, and Space
Norway deploy large satellite constellations to LEO with a low
per-device cost. They have secured the RF spectrum from the
federal communications commission for their constellations
[3]–[6]. Such systems have advantages in applications such
as precision agriculture, environmental monitoring, disaster
relief, and humanitarian assistance. Increasing investments
in satellite-related technologies make the LEO satellite con-
stellation a strong complement to terrestrial networks and
future 5G/6G communications [7], [8]. The traditional LEO
satellite constellations can’t provide computing service di-
rectly because the computing power is weak and there is
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Fig. 1: Satellite edge computing system model.

no unified service framework and service interface. Most
existing satellite systems adopt a “bent-pipe” architecture,
where ground stations send commands to orbit and satellites
reply with raw data. As the constellation population increases,
the bent-pipe architecture breaks down because of limited link
availability and bitrate bottlenecks. These limitations of bent-
pipe architecture motivate the Satellite Edge Computing (SEC)
technique by placing computing resources at the LEO satellite
constellation [9].

Most existing works related to SEC focus on space-air-
ground integrated network architecture [7], [8], [10]–[17] and
SEC framework [9], [18]–[21]. These works are the research
foundation for service placement and computation offloading
[22]. A few works focus on computation offloading to LEO
satellites [2], [23]–[25]. They assume that services are already
placed merely concentrate on the offloading strategies, while
the offloading performance can’t be guaranteed if services
are not available or service robustness is poor. While service
placement has been investigated extensively in mobile edge
computing [26]–[34], these works cannot be applied to SEC
scenarios directly because of the unique characteristics of SEC
systems, such as highly dynamic network topology.

To guarantee robustness-aware service coverage with con-
strained resources, this paper studies how to efficiently deploy
services on SEC nodes. For a single service, service coverage
is defined as the user request number that can access the
service, and service robustness is defined as the user request
number that can access more than one service copies deployed
on different SEC nodes. Services deployed in the volatile SEC
environment are is vulnerable to events such as bandwidth
fluctuations, insufficient computing resources, software excep-
tions/hardware faults, and physical satellite damage. Service
failures may decline user quality of experience if they are not
covered by any other service copies, especially for latency-
sensitive services. How to achieve robustness-aware service
coverage in the volatile SEC environment is challenging.

The first challenge is how to adapt to spatial-temporal sys-
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tem dynamics. On one hand, the core topology of SEC systems
is inherently dynamic. The high-speed periodic motion of
the satellite network causes dynamic channel conditions and
changing connections with ground users and other satellites,
leading to varying service coverage and robustness. On the
other hand, the distribution of user requests varies temporally
and spatially varied, e.g., the higher densities at cities in
daytimes. The second challenge is how to balance service cov-
erage and service robustness, which are conflict (see Section
III-C). To improve service coverage, we need to deploy service
copies (of a single service) on as many SEC nodes to cover as
many user requests. To improve service robustness, we need
to deploy service copies on SEC nodes overlapping with each
other. How to tradeoff service coverage and robustness under
a limited placement budget is challenging.

In this paper, we propose a novel online service placement
algorithm for SEC to maximize robustness aware service
coverage with limited placement and operational budget. We
first model service coverage and service robustness and then
formulate the problem as an integer programming problem,
which is proven to be an NP-hard problem. In particular,
we seek to maximize the long-term average service coverage
under the constraints of service placement and operational
budgets which is predefined by service providers. By applying
Lyapunov optimization technique, our algorithm transforms
the long-term optimization problem into many real-time ones
and then makes service placement decisions without any future
information (e.g., service demand dynamics). In each real-time
optimization problem, we use the Gibbs sampling method to
achieve a near-optimal service placement decision. We prove
that the performance loss of our algorithm is theoretically
bounded.

The contributions are summarized as follows:
• To the best of our knowledge, we are the first to

study dynamic service coverage in SEC, considering
SEC characteristics, user demand, service placement and
operational costs.

• We propose a novel online service placement algorithm
with theoretical performance guarantees leveraging Lya-
punov optimization and Gibbs sampling.

• We conduct extensive simulations to evaluate the perfor-
mance of our algorithm. The simulation results show that
our algorithm can improve the service coverage by 4.3×
compared with the baseline.

The remainder of this paper is organized as follows. Section
II reviews the related work. In Section III we analyze the
system model and formulate the problem. In Section IV and
Section V, we develop the algorithm and illustrate simulation
results. Finally, we conclude our work in Section VI.

II. RELATED WORK

Network Architecture: Existing works mainly focus on
the architecture of the space-air-ground network, which in-
terconnects satellites, aerial platforms, as well as terrestrial
communication systems. Boero et al. [7], Giambene et al.
[11], Zhang et al. [12] and Shi et al. [13] investigate the
integration of satellite networks and 5G networks leveraged

by the software-defined network and network function virtu-
alization technologies. Tang et al. [15] propose a software-
defined network based network architecture and manage re-
sources in satellite-terrestrial networks in the layered and on-
demand way. Wang et al. [16] propose a reconfigurable service
provisioning framework based on the service function chain
for space-air-ground integrated networks. Some works [35]–
[37] highlight the networking challenges in LEO networks.
Besides, several works focus on SEC framework [18]–[21].
Bhattacherjee et al. [18] present the opportunities and chal-
lenges of in-orbit computing. To address the limitations of the
bent-pipe architecture, Denby et al. [19] propose an orbital
edge computing architecture to support edge computing at
nanosatellite. Yan et al. [20] present the system framework of
satellite edge computing and its resource platform, where the
hardware is based on an embedded platform and the software
is decomposed into micro-services. Xie et al. [21] study
the satellite-terrestrial integrated edge computing networks,
utilizing edge computing to improve the resource utilization
of the satellite-terrestrial network. These network architecture
works are the research foundation for the service placement
and computation offloading works.

Computation Offloading in SEC: Wang et al. [23] propose
an offloading algorithm to optimize both energy consumption
and latency for satellite-terrestrial networks with double edge
computing. Du et al. [24] propose a software-defined net-
work based architecture to support spectrum management and
traffic offloading in satellite-terrestrial networks. Cheng et al.
[25] present a flexible joint communication and computation
satellite-terrestrial integrated network framework to provide
powerful computing services to IoT users. All these work
study static service placement or computation offloading for
a specific ground area while we study global on-demand
service coverage considering network dynamics and service
robustness.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. SEC Network Overview

We consider an LEO constellation with a total number
of N satellites denoted by S = {1, · · · , i, · · · , N}. The
satellite constellation orbits can be divided into polar orbits
and inclined orbits. Polar orbits provide world coverage while
inclined orbits provide better revisit of satellites over populated
areas near the equator. Our model fits both kinds of constella-
tions. In constellations, Inter-Satellite Links (ISLs) are point-
to-point links between satellites. A well-known topology forms
a +Grid connectivity pattern where each satellite connects to 2
adjacent satellites in the same orbit, and 2 satellites in adjacent
orbits [38]. Despite there is substantial uncertainty about
whether or not ISLs will be deployed, the use of laser ISLs can
achieve high network capacities (more than 100 Gbps), which
is appealing [36], [39]. In this paper, we adopt +Grid ISL
topology in the constellation. Note that we assume that user
devices can communicate directly with satellites in their view
without any gateway intervention [40]. And careful frequency
management alleviates inter-user interference so that each
satellite can connect to multiple devices simultaneously [41],
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(a) Scenario. (b) Maximizing service coverage. (c) Maximizing service robustness.

Fig. 2: A motivating example to illustrate the conflict between service coverage and robustness.

[42]. Each SEC node is deployed with edge computational
and storage capability to provide computing services to end-
users [19]. We name each satellite with edge servers as SEC
node. As shown in Fig. 1, ground or aerial users such as
base stations, IoT devices, vehicles, and planes, can directly
request services deployed in SEC nodes [43]. In this paper, we
investigate dynamic service placement to achieve robustness
aware service coverage in SEC. We first give an intuitive
example to illustrate the conflict between service coverage
and service robustness in Fig. 2. It can be seen that service
coverage and service robustness are two conflict metrics. In
the following, we model service placement decisions, service
coverage, and service robustness formally.

B. Service Placement Decisions

We assume the time is discretized into time slots T =
{1, · · · , t, · · · , T}. Each time slot is a service placement
decision round. SEC nodes can create execution environments,
e.g., VM or Container to place services that could benefit
from SEC. These potential services include content distri-
bution and multi-user interaction services such as multi-user
gaming, co-immersion, and collaborative music [18]. Different
services are heterogeneous in terms of computing resource
requirements. There are K types of services indexed by F =
{1, · · · , k, · · · ,K}. We denote the dynamic service placement
decision with a binary variable xik(t) ∈ {0, 1}. If the service
k is placed on SEC node i at time slot t then xik(t) = 1, oth-
erwise, xik(t) = 0. The placement decision of all SEC nodes
can be denoted by x(t) = (x1(t), · · · ,xi(t), · · · ,xN (t)),
xi(t) = (xi1, · · · , xik, · · · , xiK). Considering placement cost,
each service k can be copied on at most Bk SEC nodes in the
long term. In addition, not all services can be placed at an
SEC node simultaneously because of the limited computing
resources at the SEC node. We mainly consider that the
processor capacity constraint at SEC nodes. The computation
capacity requirement of service k is denoted by pk and the
computation capacity of SEC node i is denoted by Pi. To
satisfy the computation capacity constraint,

∑
k∈F

pkxik(t) ≤ Pi
holds true. Notice that service reconfiguration (deploying
and canceling) incurs an operational cost in the dynamic
service placement. To model the operational cost, we use

xik(t− 1)⊕ xik(t) to indicate the reconfiguration for service
k between t − 1 and t, where xik(t − 1) ⊕ xik(t) = 1
if xik(t) and xik(t + 1) have different values, otherwise,
xik(t− 1)⊕ xik(t) = 0.

C. Service Coverage and Robustness Model

The area all over the world is denoted by A. The sub-
stellar point of satellite i at time slot t can be denoted
by ei(r, θi(t), φi(t)) in which r is the earth radius, θi(t) is
π
2 − latitude, φi(t) is the longitude. The point set Ai(t) of
all points within the area covered by satellite i at time slot t
can be express as

Ai(t) = {e(r, θ, φ)| sin θ sin θi(t) cos(φ− φi(t)) (1)
+ cos θ cos θi(t) ≤ cosψ}

where ψ is the half cone angle of the covered point to the
earth’s core.

We divide the global area A into M disjoint small regions,
denoted by A = {1, · · · , j, · · · ,M}. The region j can access
the service on SEC node i only if it is covered by i. Let
µij(t) = 1 denote that SEC node i can cover the region j
at time slot t, otherwise, µij(t) = 0. Since the motion of the
satellite is periodic, µij(t) is known as a prior. We assume that
each region j is relatively small compared with the satellite
coverage, partial region coverage is not considered. The region
set covered by satellite i can be expressed as,

ci(t) = {j|µij(t) = 1,∀j ∈ A}. (2)

We denote the service demand of service k in time slot t with
a vector dk(t) = (dk1(t), · · · , dkj(t), · · · , dkM (t)), where
dkj(t) is the task arrival for service k in region j. In practice,
the service demand can be well estimated with high accuracy
[44]. Motivated by the radio coverage, the service coverage of
service k deployed on satellite i is defined as the number of
user requests served by service k considering unbalanced user
request distribution. The service coverage of all SEC nodes at
time slot t can be expressed as,

C(x(t)) =
K∑
k=1

N∑
i=1

∑
j∈ci(t)

dkj(t)xik(t). (3)
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Despite the assumption that ISLs are adopted in constellations,
the service access over multiple hops of ISLs is out of the
scope of this paper.

Given a pair of SEC nodes i and i′, we use νii′j(t) =
µij(t)µi′j(t) to denote if they cover the same region j at
time slot t, where i′ 6= i. Intuitively, νii′j(t) = νi′ij(t).
And we define νiij(t) = 0. Two SEC nodes i and i′ are
neighbors if they cover the same region j, i.e., νii′j(t) = 1.
The relationship between SEC nodes can be expressed by an
undirected graph G = (S, E), in which S is the vertex (SEC
nodes) set and the E is the edge set. An edge exists between
two neighboring SEC nodes i and i′. The service robustness
is defined as the number of user requests co-covered by each
service k deployed on both SEC nodes i and i′, which can be
expressed as,

R(x(t)) =
1

2

K∑
k=1

N∑
i=1

N∑
i′=1

M∑
j=1

w(t)νii′j(t)dkj(t)xi′k(t)xik(t),

(4)

where w(t) ∈ [0,∞) is the weight constant that is positively
related to the preference on the service robustness.

We give a motivating example in Fig. 2 to illustrate that the
service coverage and the service robustness are two conflict
metrics. From Fig. 2(a), we consider a scenario where three
copies of a service can be deployed in three of the five SEC
nodes {S1, S2, S3, S4, S5} and the user requests are assumed
to be distributed uniformly. Thus, the service coverage can
be evaluated by the union of satellite coverage area while the
service robustness is evaluated by the intersection of satellite
coverage area.In Fig. 2(b), the service placement decision
{S2, S4, S5} maximizes the service coverage but minimizes
the service robustness. In Fig. 2(c), the service placement
decision {S1, S2, S3} maximizes the service robustness but
minimizes the service coverage. This reflects the conflict
between service coverage and service robustness.

D. Problem Formulation

Service coverage focuses on the coverage over local regions
with service requests. It generally requires choosing a smaller
number of satellites to deploy services to achieve on-demand
service coverage. The dynamic service placement in SEC aims
to maximize robustness aware service coverage,

RC(x(t)) = C(x(t)) +R(x(t)). (5)

The problem can be formulated as

P1 max
x(1),··· ,x(T )

lim
T→∞

1

T

T−1∑
t=0

RC(x(t)) (6)

s.t.(C1) lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

xik(t) ≤ Bk,∀k ∈ F

(C2) lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

xik(t− 1)⊕ xik(t) ≤ Ok,∀k ∈ F

(C3)

K∑
k=1

pkxik(t) ≤ Pi,∀i ∈ S,∀t ∈ T .

Here the constraint (C1) ensures the long-term averaged num-
ber of service copies deployed at all edge nodes does not
exceed the given budget Bk. The constraint (C2) ensures that
the long-term averaged reconfiguring times of each service
k donot exceed the predefined numbers Ok. The constraint
(C3) ensures that the computation demand of services in each
SEC node i does not exceed its capacity in each time slot
t. To solve problem P1, the proposed algorithm needs to
make service placement decisions to adapt to system dynamics
such as service demand and satellite mobility in each time
slot. Because network conditions and user behavior are hard
to predict in a long run. Leveraging Lyapunov optimization
theory [45], the long-term constraints (C1)-(C2) control the
queue stability and long-term problems can be decoupled into
real-time ones. This method solves the real-time optimization
problem online without requiring future system information.

IV. ALGORITHM DESIGN

A. Lyapunov Optimization based Online Service Placement

We develop an online service placement algorithm under the
Lyapunov optimization framework. As the service placement
decision is made dynamically, the service placement and
operational cost in different time slots can exceed or remain
under the budget limit. To characterize the historical exceeded
service placement and operational cost, we define virtual
queues for each service k as,

QBk (t+ 1) = QBk (t) + max{
N∑
i=1

xik(t)−Bk, 0}, (7)

QOk (t+ 1) = QOk (t) + max{
N∑
i=1

xik(t− 1)⊕ xik(t)−Ok, 0},

(8)

where QBk (t) and QOk (t) are the queue lengths at time slot
t, and initialized as 0 (i.e., QBk (0) = 0, QOk (0) = 0) and
xik(−1) ⊕ xik(0) = 0. The queues indicate that QBk (t) and
QOk (t) accumulate the excessive service copies and operational
cost over the budget limit. Constraints (C1) and (C2) can be
ensured by enforcing the stability of Q(t) = (QBk (t), QOk (t))
[45]. The quadratic Lyapunov function is defined as

L(Q(t)) =
1

2

K∑
k=1

[(QBk (t))2 + (QOk (t))2], (9)

and one step conditional Lyapunov drift function is defined as

∆(Q(t)) = E[L(Q(t+ 1))− L(Q(t))|Q(t)]. (10)

It can be inferred from [45] that the smaller ∆(Q(t)) (for
each t ∈ T ) is, the more likely Q(t) is stabilized. We seek
to find a service placement solution that balances the service
coverage performance and cost. Lyapunov drift-plus-penalty
function ∆(Q(t))−V E[RC(x(t))|Q(t)] is introduced to solve
the problem, where V is a non-negative parameter that controls
the trade-off between service coverage performance and cost
queue length. From the definition of Q(t), we can derive that
the drift-plus-penalty is upper bounded as
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Algorithm 1 Online Service Placement Algorithm

Input:
Preference factors w(t), service demand dk(t), coverage
indicator µij(t).

Output:
Service placement decision x∗(t), t = {1, · · · , T}.

1: Initialization: QBk (0) = 0, QOk (0) = 0, ∀k.
2: for Each time slot t = 1, · · · , T do
3: Solve the problem P2 : x∗(t) = min(12).
4: Update the length of cost queues according to (7) and

(8) based on x∗(t).
5: end for

∆(Q(t))− V E[RC(x(t))|Q(t)] ≤ ∆B (11)

+ E[
K∑
k=1

QBk (t)(
N∑
i=1

xik(t)−Bk)

K∑
k=1

QOk (t)

(

N∑
i=1

xik(t− 1)⊕ xik(t)−Ok)− V ·RC(x(t))|Q(t)],

where ∆B = 1
2

K∑
k=1

[(N−Bk)2+(N−Ok)2] for each time slot

t. According to the Lyapunov drift-plus-penalty framework in
[45], we just need to optimize the bound on the right side of
(11) in each time slot t, then the problem P1 is transformed
into

P2 : min

K∑
k=1

(QBk (t)

N∑
i=1

xik(t) +QOk (t) (12)

N∑
i=1

xik(t− 1)⊕ xik(t)) +

K∑
k=1

pkxik(t)− V ·RC(x(t)).

Till now, we have transformed the original dynamic opti-
mization problem P1 to a static optimization problem P2
in each time slot. We describe the online service placement
algorithm in Algorithm 1. In each time slot t, it first solves the
problem P2 to obtain a near-optimal solution, and then update
the placement and operational cost queues. In the following,
we introuduce Markov approximation [46] and parallel Gibbs
sampling method [47] to solve problem P2.

B. Parallel Gibbs Sampling

We design a service placement algorithm that can obtain
a near-optimal solution. We first prove the NP-hardness of
problem P2.

1) Complexity Analysis of P2: We present the NP-hardness
of P2 by analyzing one simplified case considering only one
type of service (K = 1) with a given number of service copies

(i.e.,
N∑
i=1

xik(t) = B) without operational cost (i.e.,
N∑
i=1

xik(t−

1)⊕xik(t)) = 0) and SEC node capacity (i.e., constraint (C3)).

Thus, the objective of P2 can be written as QBk (t)B − V ·
RC(x(t)). The simplified problem P2-S can be expressed as

P2− S : max RC(x(t)) (13)

s.t.

N∑
i=1

xi1(t) = B.

Problem P2-S is NP-hard since it is reducible from the k-
Heaviest-Subgraph problem [48]. Since the service place-
ment decisions of SEC nodes are coupled, problem P2 is
complicated. Optimization solvers, e.g., IBM-CPLEX [49],
usually solve this kind of problem in a centralized manner,
which is computationally prohibitive. Therefore, we propose
a decentralized algorithm with low time complexity based on
Markov approximation and Gibbs sampling.

2) Algorithm Design: As we perform the optimization in
each time slot t, we omit the time index for ease of description
in the following part. We denote U(x) as the objective function
of problem P2 in each time slot t, where x ∈ X is the service
placement decision. Problem P2 is transformed into the convex
log-sum-exp problem [46],

min
p(x)

∑
x∈X (t)

p(x)U(x) +
1

τ

∑
x∈X (t)

p(x) log p(x) (14)

s.t.
∑

x∈X (t)

p(x) = 1, ∀t ∈ T ,

where p(x) is the probability of the service placement decision
x. τ is the approximation ratio of the entropy term. The
problem in (14) becomes the problem P2 as τ → ∞. The
optimal solution can be obtained as [46],

p∗(x) =
e−τU(x)∑
x′ e
−τU(x′)

. (15)

According to probability p∗(x), we can get the optimal service
placement decision. The basic idea is to constantly update
service placement decisions to form a Markov chain, which
is irreducible that traverses all feasible states. There are two
drawbacks if we update placement decision centralized by
randomly altering the placement decision of each SEC node.
First, the time complexity is high when the exploration space
(determined by the number of SEC nodes and service types)
is large. Second, it needs to collect the global information in
the whole SEC system, which is hard sometimes.

In this paper, we resort to Gibbs sampling to approach the
stationary distribution in (15) (also called Gibbs distribution),
which can be guaranteed by the Markov chain Monte Carlo
theory. The sequential Gibbs sampling iteratively samples
service placement strategies of different SEC nodes according
to the following distribution,

xi ∼ p(xi|x−i) =
e−τ

∑
n∈S Un(xi,x−i)∑

x′i∈Xi
e−τ

∑
n∈S Un(x′i,x−i)

, (16)

where Xi(t) is the feasible decision set, xi ∈ Xi is the
service placement decision of SEC node i ∈ S and x−i
represent the joint decision of all SEC nodes except i. We
also use n to denote an SEC node to distinguish from SEC
node i, Un is the nth part of the objective function in (12)
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and U(x) =
∑
n∈S Un(x). The joint posterior distribution

guarantees that Gibbs sampling converges to the Gibbs dis-
tribution. However, the sequential Gibbs sampling has the
same drawbacks as centralized updating. One intuitive idea is
to introduce parallelism into the sequential Gibbs sampling.
If the decision update of SEC node i don’t influence the
sampling distribution p(xi′ ,x−i′) of SEC node i′, then SEC
nodes i and i′ can make decisions simultaneously. Markov
Random Field theory can support this intuition. It is an
undirected graphical model in which each node corresponds to
the service placement decision variable and the edges identify
the neighbor relationship between nodes. Markov blanket of
SEC node i is the set of SEC nodes adjacent to SEC node i
denoted by Γi. The service placement decision of SEC node
i is conditionally independent of that of the SEC nodes not in
the Γi, that is, p(xi|xΓi

) = p(xi|x−i).
As we mentioned that two SEC nodes i and i′ are neighbors

if there exists any region j such that νii′j(t) = 1. We define
the set of the neighbor of i on graph G as one-hop neighbors
denoted by Ωi,1 and the neighbors of the one-hop neighbors
of i (excluding itself) as two-hop neighbors denoted by Ωi,2.
In the following proposition, we will show the mapping of
Markov Random Field on our physical network G defined in
the system model.

Proposition 1. The Markov blanket of SEC node i on the
Markov Random Field is the set of SEC nodes in Ωi,1 and Ωi,2
on physical graph G, namely, Γi = Ωi,1∪Ωi,2. Moreover, the
sampling probability can be rewritten as

xi ∼ p(xi|x−i) =
e
−τ

∑
n∈Ωi,1

Un(xi,xΓi
)∑

x′i∈Xi
e
−τ

∑
n∈Ωi,1

Un(x′i,xΓi
)
. (17)

Proof. See the proof of Proposition 1 in [47].

Proposition 1 implies that SEC nodes more than two hops
away from i has no influence on its sampling probability.
This is critical to enable parallel sampling of SEC nodes’
decisions. We divide SEC nodes into L(L ≤ N) different
groups so that all the SEC nodes in the same group can
update their placement decision simultaneously. We seek to
minimize L to maximize the parallelization level, which can
be transformed into a graph coloring problem on the Markov
Random Field. We can solve it by a sequential coloring
algorithm [47]. Let Sl be the set of SEC nodes with color
l. The proposed algorithm works iteratively. It first chooses
an SEC node set Sl. When SEC nodes in Sl make service
placement decisions, they need the service demand patterns
of one-hop neighbors and the service placement decision in
the Markov blanket. Based on this information, SEC node i
can compute

∑
n∈Ωi,1

Un(xi,xΓi) for each service placement
decision xi, then SEC node i update to a new decision
according to the probability distribution in (17). To save
communication overhead, SEC nodes can change the service
placement decision when Algorithm 2 converges to the global
optimal solution. As we mentioned, τ is the approximation
ratio of the convex log-sum-exp problem. From (17), we
find that τ influences the decision updating probability. When
τ → ∞, the algorithm becomes greedy. If a decision has a

Algorithm 2 Service Placement Based on Gibbs Sampling

Input:
Preference factors w(t), service demand dk(t), coverage
indicator µij(t), physical network graph G, queue length
QBk (t), QOk (t), approximation ratio τ .

Output:
Service placement decision x∗(t).

1: Construct the Markov random field based on G and L
coloring sets.

2: for Each iteration iter do
3: Pick a SEC node set Sl according to a predefined order;
4: for Each SEC node i in Sl do
5: for Each feasible service placement decision xi in

Xi(t) do
6: Calculate the value of

∑
n∈Ωi,1

Un(xi,xΓi
).

7: end for
8: Set x∗i (iter+1) = xi according to the probability in

(17) and send the decision to all SEC nodes in Γi.
9: end for

10: Each SEC node i /∈ Sl, keep x∗i (iter + 1) = x∗i (iter).
11: Stop iterations when the value of objective function in

(12) converges.
12: end for
13: Return the service placement decision x∗.

smaller value of
∑
n∈Ωi,1

Un(xi,xΓi), the algorithm keeps it
with a greater probability. When τ is getting smaller, the gap
between probabilities of different decisions will be reduced,
the algorithm tries to explore all possible decisions without
convergence. To balance the exploration and exploitation, τ is
changed adaptively: τ is small at the beginning to explore all
the decisions and increases over iterations. The algorithm is
stated in Algorithm 2.

3) Time Complexity Analysis of Algorithm 2: The complex-
ity of Algorithm 2 is dominated by triple for-loops. We denote
I as the iterations needed in the outer loop to convergence.
In the middle loop, there is L iterations as we use graph
coloring to generate L SEC node sets. In the inner loop,
the iteration number is determined by the decision space
size of each SEC node, which is smaller than maxi∈S |Xi|.
The complexity of each operation in the inner loop is O (1).
Therefore, the complexity of Algorithm 2 can be quantified
by O (I · L ·maxi∈S |Xi|).

Remark 1. As Algorithm 2 is part of Algorithm 1, two input
information need to be calculated in Algorithm 1 base on
global information, one is physical network topology, the other
is the queue length. The global information can be calculated
in any authorized SEC node, and broadcast to all SEC nodes.
The physical network topology can be obtained because the
satellite motion is predictable. When the joint service place-
ment decisions of all SEC converges to the global optimum in
each time slot, they need to transmit the service placement
decisions over their ISLs to the SEC node calculating the
global information to update each queue length.
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C. Algorithm Performance Analysis

In this part, we analyze theoretically our online service
placement algorithm for SEC. First, we prove the convergence
of Algorithm 2. Then we discuss the optimality gap of
Algorithm 2. At last, we compare Algorithm 1 with the offline
optimum.

Theorem 1. Algorithm 2 converges from any starting state of
the Markov chain to Gibbs distribution p∗(x) in (15).

Proof. See the proof Proposition 2 in [47].

As stated in Theorem 1, Algorithm 2 can achieve the
optimal probability distribution for the convex log-sum-exp
problem in (14). We denote the minimum supremum bound
and expected supremum bound derived by Algorithm 2 as
U∗(x) and Ũ(x) =

∑
x∈X (t)

p∗(x)U(x) respectively.

Theorem 2. The optimality gap of Algorithm 2 is given as

Ũ(x)− U∗(x) ≤ 1

τ
log |X |, (18)

where |X | is the number of feasible decisions of all SEC nodes.

Proof. See the proof of Theorem 1 in [46].

Theorem 2 implies that Algorithm 2 can achieve minimum
supremum bound U∗(x)) when τ →∞. The following theo-
rem demonstrates the sub-optimality of Algorithm 1 compared
with the offline optimum.

Theorem 3. Following the optimal online service placement
decision x∗(t) obtained by Algorithm 1, the long-term robust-
ness aware service coverage satisfies:

lim
T→∞

1

T

T−1∑
t=0

E[RC(x(t))] ≥ RC∗ − ∆B

V
− log |X |

τV
, (19)

and the long-term cost deficit satisfies:

lim
T→∞

1

T

T−1∑
t=0

K∑
k=1

{E[

N∑
i=1

xik(t)−Bk] (20)

+ E[
N∑
i=1

xik(t− 1)⊕ xik(t)−Ok]}

≤ ∆B + V (RC∗ −RCmin)

ε
+

1

ετ
log |X |,

where RC∗ is the optimal robustness aware service coverage
to P1, RCmin is the smallest robustness aware service cover-
age, and ε > 0 is a constant.

Proof. See Appendix A.

In Theorem 3, our algorithm can achieve a lower bound of
the time-averaged service coverage in (19) and an upper bound
for the sum of the service placement and operational cost
deficit in Eq. (20). For any parameter V > 0, the time averaged
service coverage differs from the optimal value RC∗ by no
more than ∆B

V −
log |X |
τV , which can be made arbitrarily small

as V is increased. However, the time average cost deficit bound
increases linearly with the parameter V , as shown by (20). This
presents a performance-cost tradeoff of [O (1/V ) , O (V )] in

TABLE I: Simulation Parameters

Parameter Value
Total decision round number, T 180
Service type number, K 5
SEC node number, N 144
Ground region number, M 354
Average service demand arriving rate, dkj (0, 10)
SEC node computation capacity, Pi [1, 2] Giga cycles
Service computation requirement pk , βs [0.5, 1] Giga cycles/service
Service placement budget, Bk 25 (services)
Service adjustment budget, Ok 5 (services)
Approximation ratio parameter, τ 500
Lyapunov control paramenter, V 100
Service robustness preference parameter, w(t) [0, 10]
Each decision round duration 8 minutes

Fig. 3: Coverage areas of the walker constellation.

our online algorithm, where we can set the parameter V to a
desirable value to achieve the balance of the long-term service
coverage performance and the cost.

V. SIMULATION RESULTS

A. Simulation Settings

In this section, we conduct extensive simulations to evaluate
our algorithm. We simulate a Walker-Delta constellation in
AGI’s STK software according to the rules in [50]. As shown
in Fig. 3, the constellation has 12 orbital planes, each of
which consists of 12 satellites at an altitude of 829 km with
an inclination of 60°. Each satellite has a communication
coverage (pink circles) and different satellites have overlapped
coverage. Coverage at a location varies over time as satellites
move in and out of view. To simulate the service demand
distribution on the earth’s surface, we divide the earth’s surface
into 354 regions by latitude and longitude with different areas
according to global population distribution data [51]. About
75% of regions are on the ground while about 25% regions
on the sea [51]. Fig. 4 shows the distribution of regions. We
set the service type number as 5. Each region has simulated
service requests generated by a ground station in the center.
The service demand of each region is modeled as a Poisson
process with an arrival rate randomly generated from 0 to 10
[47]. And we assume that the service demand of each region
is generated in the center of the region. We use AGI’s STK
to simulate the satellite motion for one day and collect the
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Fig. 4: Ground region division illustration.

connection data between each satellite and each region every
one second. We make service placement decisions every eight
minutes because the service placement decision cannot change
very frequently while each sate-ground link session can last
between a few seconds and ten minutes [19]. So we have total
180 (=60*24/8) decision rounds. The computing capacity of
SEC nodes is randomly set as [1, 2] Giga CPU cycles and
each service need a computation capacity of [0.5, 1] Giga
CPU cycles. The placement budget of each service is set as
25 (services) and the operational cost of each service is set
as 5 (services). The approximation ratio τ is set as 500. The
service robustness preference parameter is randomly set as [0,
10]. We compare our algorithm under different approximation
ratio parameters (τ = 500, τ = 30 ∗ iteration) with a
random service placement method labeled as Random. In each
decision round, SEC nodes choose a feasible service placement
decision only considering the service placement budget. Next,
we evaluate our algorithm under different parameter settings.

B. Performance Comparison with Time

First, we evaluate the performance and average cost of our
algorithm along with time slots. We compare our algorithm un-
der different approximation ratio parameters with the Random
algorithm. From Fig. 5(a), we can observe that our algorithms
achieve average 4.3× and 3.9× robustness aware service
coverage of Random algorithm when τ = 30 ∗ iteration and
τ = 500 respectively. The coverage performance fluctuates
over different time slots because the service demand of each
time slot is randomly generated. We can also observe that
the robustness service coverage is higher when τ is changed
adaptively, i.e., τ = 30 ∗ iteration and the reason will be
explained in the convergence analysis of Fig. 7(a). In Fig.
5(b), we can observe that the service placement cost of all
three algorithms converges to 25. The adjustment cost of our
algorithm converges to 5 while that of the Random algorithm
converges to 35 which violates the operational cost budget.
The reason is that the Random algorithm randomly makes
service placement decisions without considering operational
cost budget.

C. Performance Comparison with Different Parameters

Next, we evaluate the algorithm performance under different
robustness preference settings and service demand intensity
settings. In these two evaluations, we set τ = 30 ∗ iteration
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Fig. 5: Performance comparison along with time.
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Fig. 6: Performance comparison under different parameters.

and compare with Random algorithm. In the robustness pref-
erence impact evaluation, we vary robustness preference in the
range of [10, 90] and record the value of service coverage and
service robustness respectively in Fig. 6(a). As expected, the
service coverage decrease because it is less important when
the robustness preference increases. The service robustness
first increases and then keeps unchanged with the robustness
preference because the service robustness is more important
and increases to the maximal value which cannot increase
anymore. Both the service coverage and service robustness
of Random algorithm keep unchanged with the robustness
preference because the Random algorithm randomly makes
service placement decisions without considering the objective
function. In the service demand intensity impact evaluation,
we vary the average service demand arrival rate in the range
of [10, 50] and record the value of robustness aware service
coverage. From Fig. 6(b), our algorithm achieves on average
4.3× robustness aware service coverage of Random algorithm
and the robustness aware service coverage of both algorithms
increases with the service demand intensity as we expected.
However, the increasing trend of both algorithms is not strictly
linear. Since this result is not algorithm-specific, we think
that it is caused by service request arrival randomness. So we
can infer that our algorithm has good scalability with service
demand intensity.

D. Algorithm Parameter Analysis

In the following, we verify the theoretical result of con-
vergence in Theorem 1 by simulations in Fig. 7(a). We
have analyzed in the algorithm design part that Algorithm 2
converges to the global optimal solution when τ → ∞ and
different values lead to different convergence performance.
Hence, we evaluate Algorithm 2 under three typical settings of
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Fig. 7: Algorithm parameter analysis.

τ , i.e., a constant value τ = 500, a linear function of iterations
τ = 30∗ iiteration, and a quadratic function τ = iteration2.
From Fig. 7(a), we can observe that our algorithm has the best
performance when τ = 30∗iteration while our algorithm has
the worst performance when τ = 500. As we mentioned that
τ influences the decision updating probability. When τ →∞,
our algorithm can be stuck in a local optimum because it
becomes greedy and keeps an updated decision with a greater
probability if it incurs a smaller value of

∑
n∈Ωi,1

Un(xi,xΓi).
When τ is getting smaller, the gap between probabilities of
different decisions will be reduced, our algorithm tries to
explore all possible decisions without convergence. So when
τ is increased from a small value adaptively, the algorithm
performance is better. We also find that the linear function
has better performance than higher power functions because
higher power function makes τ to increase greatly and leads
to a local optimum.

Fig. 7 (b) shows the impact of Lyapunov parameter V on
robustness aware service coverage and the sum of service
placement and operational cost of each service. By increasing
V from 10−2 to 105, our algorithm cares more about the
service coverage performance and thus the robustness service
coverage increases to a maximal value and keeps unchanged.
However, with less concern on the service placement and oper-
ational cost, the cost increases. The coverage-cost performance
follows the [O(1/V ), O(V )] tradeoff as stated in Theorem
3. At the same time, the results also provide an insight for
selecting V in practice.

VI. CONCLUSIONS

In this paper, we investigate dynamic service placement
in SEC to achieve robustness aware service coverage with
a limited budget. We formulate the problem as a stochas-
tic optimization problem with long-term averaged objective
function and constraints. Then, we propose a novel online
algorithm to transform the long-term averaged problem into
real-time optimization problems in each time slot and solve
them online leveraging Lyapunov optimization theory, Markov
approximation method, and Gibbs sampling algorithm. We
prove that our algorithm can converge to a near-optimal result
and the optimality gap is with a theoretical bound. We carry
out extensive simulations to evaluate our algorithm and the
simulation results show that our algorithm outperforms the
baseline. In the future work, we will focus on cooperative

computation by allocating communication and computing re-
sources for space service computing to improve users’ quality
of experience such as latency in various traffic conditions.
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APPENDIX A
PROOF OF THEOREM 3

we first introduce the following Lemma to prove the time-
averaged service coverage bound.

Lemma 1. For an arbitrary δ > 0, a stationary and ran-
domized policy x̄(t) for P2 exists to make service placement
decisions independent of the queue state such that

E[RC(x̄(t))] ≥ RC∗ − δ, (21)

E[

N∑
i=1

x̄ki(t)−Bk] ≤ δ, ∀k,

E[

N∑
i=1

x̄ki(t− 1)⊕ x̄ki(t)−Ok] ≤ δ, ∀k.

Proof. See he proof of Theorem 4.5 in [45].

Algorithm 1 seeks to choose strategies x∗ to minimize P2.
Based on the Theorem 2, the optimality gap is 1

τ log |X | over
all time slots. By applying Lemma 1 into the drift-plus-penalty
inequality, we obtain:

∆(Q(t))− V E[RC(x∗(t))|Q(t)] (22)

≤ ∆B +
1

τ
log |X |+ E[QBk (t)(

N∑
i=1

x̄ki(t)−Bk)

+QOk (t)(

N∑
i=1

x̄ki(t− 1)⊕ x̄ki(t)−Ok)

− V ·RC(x̄(t))|Q(t)]

(a)

≤ ∆B +
1

τ
log |X |+QBk (t)δ +QOk (t)δ − V · (RC∗ + δ).

The inequality (a) is because the policy x̄ is independent of
the cost deficit queue. Let δ go to zero, sum the inequality
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over t ∈ 0, 1, ..., T − 1 and then divide the result by T , we
have:

1

T
E[L(Q(T − 1))− L(Q(0))]− V

T

T−1∑
t=0

E[RC(x∗(t))]

(23)

≤∆B +
1

τ
log |X | − V ·RC∗.

Considering that L(Q(T − 1)) ≥ 0 and L(Q(0)) = 0 , we
have the bound for long-term service coverage.

To obtain the long-term cost deficit bound, we assume that
there are a value ε and a policy x̃ that satisfies:

E[

N∑
i=1

x̃ki(t)−Bk] ≤ −ε,∀k, (24)

E[

N∑
i=1

x̃ki(t− 1)⊕ x̄ki(t)−Ok] ≤ −ε,∀k.

(25)

Plugging above into (11), we have

∆(Q(t))− V · E[RC(x∗(t))|Q(t)] ≤ ∆B +
1

τ
log |X | (26)

− V ·RC(x̃(t)− ε(
K∑
k=1

QBk (t) +

K∑
k=1

QOk (t)).

Summing the above over t ∈ {0, 1, ..., T − 1}, we have

lim
T→∞

1

T

T−1∑
t=0

K∑
k=1

E[QBk (t) +QOk (t)] (27)

≤ 1

ε
∆B +

1

ετ
log |X |+ V

εT

T−1∑
t=0

(RC(x∗(t))−RC(x̃(t)))

≤ ∆B + V · (RC(x∗(t))−RC(x̃(t)))

ε
+

1

ετ
log |X |

≤ ∆B + V · (RC∗ −RCmin)

ε
+

1

ετ
log |X |.

Considering
T−1∑
t=0

K∑
k=1

E[QBk (t) + QOk (t)] ≥
T−1∑
t=0

K∑
k=1

{
E[

N∑
i=1

xik(t)−Bk] + E[
N∑
i=1

xik(t− 1)⊕ x̄ki(t)−Ok]

}
, we have the long-term cost deficit bound.
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