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Abstract—Mobile edge computing is considered as a promising
solution to release pressure on the core network and reduce
service response time. Edge nodes with storage and computation
resources are able to cache various services and process tasks
rather than offloading to remote clouds. However, it is difficult to
make service deployment decisions appropriately since resources
are limited in edge nodes and requirements of services are diverse.
The hierarchical mobile edge computing structure in 5G network
causes extra complication, and the cost of service deployment
aggravates the hardness, especially for service providers. In this
paper, we focus on the service deployment problem considering
service caching, resource allocation, and task scheduling in the
hierarchical mobile edge computing network, aiming at mini-
mizing monetary cost. To address the heterogeneous limitations
and requirements, we formulate the problem as mixed integer
non-linear programming problem and develop an iterative ser-
vice deployment algorithm by exploiting Gibbs sampling. We
make the service caching strategies of edge nodes iteratively.
Furthermore, we transform the resource allocation and task
scheduling optimization into linear programming problem and
employ a typical optimization function. Simulation results show
that our algorithm always obtains minimal monetary cost for
various number of services and task arrival rates, compared
with benchmarks.

Index Terms—Mobile Edge Computing, resource allocation,
service caching, service deployment, task scheduling.

I. INTRODUCTION

HE explosive growth of mobile devices and networking

technologies greatly promote network cloudification [1],
and expedite generation of various mobile applications such
as IoT sensor monitoring and mobile games. According to the
prediction of Cisco [2], 299.1 billion mobile applications will
be downloaded globally by 2023. It is a critical problem that
how to deploy these application services with different latency
and resource requirements appropriately. Cloud computing
provides an idea of storing these services in cloud data center
and offloading tasks through the core network. However, the
wide area network between central cloud and mobile devices
may lead to uncontrolled latency, which is not friendly for
latency-sensitive services like augmented reality. Mobile edge
computing (MEC) is a convincing solution which brings high-
performance power of cloud to network edge [3], [4]. Tasks
are able to be processed at edge nodes, which substantially
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releases the pressure of offloading traffic through the core
network and reduce service response time.

Compared with cloud which has elastic resource capacity,
resources in the edge node are limited. Therefore, the proper
caching of services and resource allocation in MEC is extreme-
ly crucial, since an edge node is not able to cache all services.
In addition, latency requirements on services are different.
For example, services such as virtual reality prefers shorter
latency, and constraint is relatively loose of video services.
Hence tasks of various services can be processed at different
layer in the hierarchical MEC framework [5], [6], which makes
task scheduling more important.

The service deployment problem in MEC has attracted at-
tention of many researchers. Poularakis et al. jointly optimize
service placement and request routing [7], which maximize
the number of requests served by edge nodes. However,
the request that offloaded to cloud may exceed the latency
constraint and the user QoS is not able to be guaranteed.
Except that, the heterogeneities of edge nodes or services are
simplified, rather than describe the differences on resources or
requirements in the existing works [8]-[10]. More importantly,
cost (specifically, the monetary cost) is practical for service
providers in service deployment, and is under-appreciated
[11]-[14]. In fact, we should not only solve the complications
caused by varieties of edge nodes and services, but also reduce
the service deployment cost.

In this paper, we solve the service deployment problem by
answering three questions: which services should be cached in
each edge node, how many resources will be used, and how
to schedule tasks of corresponding services. Firstly, we cache
services (including the application data and related databases)
not only consider diversities of edge nodes, but also meet
distinct requirements of services. Secondly, given the service
caching strategies, proper computation resources should be
allocated to match the occupied storage resources. Thirdly,
computation tasks should be scheduled correctly among the
edge nodes that have cached the corresponding services.
Finally, we greatly reduce service deployment cost by taking
full use of resources in each edge node.

Challenges for the problem can be summarized into two
folds: coupled problem, and heterogeneities of edge nodes
and services. Firstly, service caching, resource allocation, and
task scheduling are coupled. To be specific, service caching
should be supported by resource allocation, or the strategy is
meaningless. And resource allocation without caching service
induce waste. Besides, though caching strategies restrain the
range of task scheduling, the scheduling indicates performance
of service caching. The amount of allocated resources de-



termines the number of scheduled tasks, and in return, task
scheduling results reflect the resource requirement. Consid-
ering interactions between the three aggravates challenges of
solving the problem. Secondly, each kind of resources and
price of edge nodes are diverse, requirements of resources
and latency of services are distinct, which makes resource
allocation and task scheduling more difficult. As shown in
Fig. 1, different categories and number of servers indicates the
resources of edge node are various, and hierarchical structure
complicates the difference. Communication latency increases
with layer since the transmission distance from base stations
to edge nodes grows. In view of each service has individual
requirement on resources and latency, the balance between
resource usage and latency causes complexity. Servers at
lower-layer are closer to users, leads to higher expense as they
are placed on densely-populated area with expensive rent. For
reducing cost, the trade-off between resource usage among
edge nodes makes the problem even difficult.

In this paper, we investigate the service deployment problem
with the purpose of minimizing monetary cost while meeting
service latency and resource requirements. We further propose
an iterative service deployment algorithm by exploiting Gibbs
sampling, which decouple and simplify the problem. We
update service caching strategies of edge nodes iteratively,
and jointly optimize resource allocation and task scheduling
with the results of service caching. To make full use of lim-
ited resources, we consider storage and computation resource
allocation respectively. In particular, we divide computation
tasks and schedule different portion to diverse edge nodes
for improving resource efficiency. We use CPU frequency
to represent the computation resource of each edge node,
and compensate lager transmission latency by allocating more
computation resource of a remote edge node. In other words,
the remote edge node with greater resources is able to reduce
computation latency and meet the latency requirement of the
corresponding service. Therefore, we reduce monetary cost
through weighing resource allocation and task scheduling.

Our contributions are summarized as follows:

o We investigate service deployment in hierarchical MEC
network, aiming at minimizing monetary cost, within d-
ifferent service latency constraints. We depict the compu-
tation latency of each edge node by using queuing theory,
and make load balance among edge nodes for reducing
service deployment cost. Furthermore, we formulate the
problem as mixed integer non-linear program problem
and decouple it to release the complexity.

o We propose an iterative algorithm and give the caching
strategies under various resource limitation and different
latency requirements for services. Besides, we transfor-
m the optimal resource allocation and task scheduling
subproblem into linear programming problem and take
advantage of a typical optimization function.

e We compare our algorithm with three benchmarks by
a variety number of services and task arrival rates.
Simulation results demonstrate the effectiveness of the
proposed algorithm and the superior performance on
reducing service deployment cost.
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Fig. 1: Price-aware service deployment structure in
hierarchical MEC network.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes the system
model and defines the problem formally. And we develop
the algorithms in Section IV. Section V performs simulations,
followed by the conclusion in Section VI.

II. RELATED WORK

Mobile edge computing has been anticipated as a promising
solution to reduce service response time and release stress
on massive offloading traffic of the core network. However,
resource limitation in edge nodes is the inherent deficiency
which confines the performance. There has been extensive
studies on service caching or service deployment, to optimize
QoS and improve resource utilization.

It is an effective approach to cache contents or services
in edge nodes previously. In order to maximize cache hitting
rate, Feng et al. [15] propose a content caching framework
with multiple cloudlets at the edge of network. Zhang et al.
[16] further take popular contents into account, for minimizing
average number of hops across caching tiers and maximizing
the overall cache hitting rate within the same tier. To process
computation tasks, Xu et al. [17] jointly optimize dynamic
service caching and task offloading. Besides, deadline-aware
task scheduling maximizes the number of deadlines and is
benefit for latency-sensitive tasks [18], [19]. Additionally,
some researchers provide the idea of edge cooperation [20],
[21], for maximizing the amount of tasks which processed at
edge nodes. Nevertheless, on the one hand, maximization on
cache hitting rate or tasks means that not all requests from
users will be responded within service latency constraint. It
can hardly guarantee user experience in practical. On the other
hand, the limited resources in edge nodes are not able to be
fully utilized without reasonable allocation.

Further, a number of researchers focus on joint task of-
floading and resource allocation. In particular, Yang et al. [22]
consider storage and computation resource usage, as well as
computation cost as for placing services and dispatch requests.
The work [23] minimizes monetary cost for application service
providers, and Pasteris et al. [24] try to maximize the total
reward when placing multiple services in a heterogeneous
MEC system. Zhou et al. [25] solve the problem of dynamic




service deployment expect for minimal response latency under
a given budget constraint. Additionally, Ouyang et al. [26]
propose a novel adaptive service placement mechanism which
jointly optimizes latency and minimize total cost by the
online algorithm without future information. Different from
the existing work, we regard each edge node as an unique
in terms of capacities and price of resources. We assume
that storage and computation resources are diverse between
edge nodes, and price is varying on each kind of resources.
Moreover, the resources consumption, latency requirements
and tasks of each service are individual.

In brief, we study service deployment by jointly consider
service caching strategy, resource allocation, and task schedul-
ing. We simplify the complex correlations in the coupled
problem without losing heterogeneities of edge nodes and ser-
vices. We reduce total monetary cost with reasonable resource
allocation and avoid wasting. Except that, we meet service
latency constraint by scheduling tasks to the valid destination.
The user experience is guaranteed since each task can be
processed within latency requirement.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the hierarchical MEC network,
diverse services, and latency. We provide the model in detail
and formulate the service deployment problem.

A. Hierarchical Mobile Edge Computing Network

We consider the hierarchical MEC consists a series of base
stations and edge nodes. The lowest part of the network is
a set of B = {1,2,..., B} base stations (on the far left in
Fig. 1). They are wired connected to edge nodes and have no
computation capability. Each base station j € B3 receives user
requests for all kinds of services and transmits corresponding
tasks to the appropriate edge node.

In addition, the other layers of the network are composed
of different number of edge nodes respectively. The partition
of different layer in the network can be comprehended by the
covered area. The number of edge nodes decreases relatively
since nodes at upper layer serve larger coverage. It is worth
noting that an edge node stands for a data center consists
of servers. Accordingly, capacity implies sum of available
resources in servers which form the edge node.

Specifically, suppose that there is a list of £ = {1,2, ..., E'}
edge nodes, and each edge node k¥ € &£ has a maximal
storage capacity Ay, which is used to store candidate services.
Assuming that price of all available storage resources Ay
in edge node k is P}, then cost caused by storage resource
consumption can be calculated proportionally. Similarly, each
edge node k has a maximal computation capacity F},, denoted
by CPU frequency (cycles per second). Suppose price of Fj
is Pf. The cost of computation resource would be calculated
proportionally as well.

B. Service

We will deploy multiple services of service provider in the
same time. Formally, there is a set of A = {1,2,..., N}

services ought to be deployed on E edge nodes simultaneously.
In addition, each service can be replicated and cached in a
group of edge nodes, but the same service is exclusive in
a certain edge node. We do not impose restrictions on the
number of duplications of the service, that is, we are allowed
to cache the service on each edge node if feasible.

Let o; express storage requirement of each service i. Fur-
thermore, z! € {0,1} is a binary decision variable to show
whether service i is cached in edge node k or not. For ensuring
any kind of task can be responded in the network, each service
should be cached at least once:
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Let x), = {x} | i € N'} denote service caching decision of an
edge node k, and X, is the action space.

As mentioned before, the amount of various resources
in each edge node increases layer by layer, since lower-
layer means closer to users and it is more expensive to
manage servers. Thus MEC provider is unwilling to place
lots of servers in densely-populated area. The fewer number
of servers not only causes less available resources, but also
leads to higher price of resources in edge nodes at lower-layer.
Nonetheless, the adjustment between resource usage and task
scheduling leads to compensation for the difficulty. As shown
in Fig. 1, different kinds of tasks (shown as red, yellow, and
green circles) can be processed in edge node at Layer 1 for
taking advantage of shorter communication latency. We can
also schedule tasks to edge node at Layer 2 or even Layer
3 with longer communication latency yet more computation
resources. Thus the reduction on computation latency is able
to meet total response time constraint, and also may bring a
lower monetary cost. Let y; & € [0, 1] represent the proportion
of tasks transmit to edge node k among the overall requests for
service i in a base station j. All the tasks should be processed:
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Moreover, the arrived tasks for service i is a Poisson process
with expected rate )\3» at base station j, which is a general
assumption [17]. Note that tasks received by edge nodes are
all from base stations, then the arrived tasks for service i at
edge node k is also Poisson process [27]. In other words, the
arrival of tasks for service i at edge node k is subject to Poisson
process with \i, which calculated as:

F= DU A 3)
jeB

Besides, assume that computation task requirement (denoted
by CPU cycles) for service i follows an exponential distribu-
tion with expectation ;. Similarly, it can be deduced that task
processing time of service i in edge node k follows exponential
distribution with expectation y; /2 , where z}, is the amount of
allocated computation resources to service i. It deserves to be
explained that resources are actually shared by all the services
cached in the same edge node, thus computation resources
have to be separated to different services. Let 0 < z}C < Fy
confine the allocated computation resources of service i could



not beyond maximal computation resources in edge node k,
and z;, = 0 while z}, = 0. Intuitively, > z; draws the entire

consumed computation resouces of c;%hed services in edge
node k, and 0 < > z}g < Fj}, imposes the computation
capacity restrictionlf\jzvve use the gray circle in Fig. 1 to
denote available computation resources and blue part shows
the consumption in practice). It is possible that some edge
nodes are not used (shown as the gray circle without blue part).
Therefore, > zi = 0 means no piece of resource is occupied

iEN
in edge node k, and also means we do not cache any service
on it. Consequently, remove extra overlapped constraints, we
know that:

ng,i,

ZZ}C < Fy,

iEN

ieN,ke€. “)

C. Latency

Service response time is absolutely vital in service deploy-
ment problem. Tasks without meeting latency requirement not
only damage quality of user experience, but also possibly incur
irretrievable mistake in some case. For instance, objective
recognition task of autonomous driving service should defi-
nitely obey the latency constraint, or it may trigger accidence.
Accordingly, except for different resource requirements, each
service has different latency requirement. Let ®; denote the
tolerant upper bound latency of service i, that is, response time
of tasks for service i is not allowed to exceed P;.

The latency we described in this model consists of two
parts: communication latency and computation latency. Some
researchers present different methods to describe wireless
latency between users and base stations [28]-[31]. Based on
these presentation, and in view of statistical information of
coverage, the communication latency in this paper is calculated
from base stations. Therefore, the latency only refers to
total time between a base station transmits user requests and
computation task completed. Connections among edge nodes
are wired, which means congestion of data transmission is
not an obstruction. We assume that the state of network is
stable in the given time interval. Let T’ be the communication
latency from initial base station j to target edge node k and
communication latency can be calculated previously.

We use queuing method for depicting computation latency,
and it mainly includes two parts: queuing and processing.
According to the M/M/1 queue, the computation latency of
tasks to service i which processed in edge node k is:

i 1 i
Dy =+7—— xp =1, (5)
Zk )\2
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where xi = 1 states that D} is valid only if service i has
already been cached in edge node k. Otherwise, we evaluate
Di with a very large number to declare computation latency
is unacceptable long once service i is non-existent in edge
node k. This constraint can vastly eliminate meaningless task
scheduling as well.

For ensuring the stability of the queue, or to avoid infinite
queue length, there should be:
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In brief, the total response time Lé i for tasks processed in
edge node k is sum of computation latency of corresponding
service i and transmission latency from base station j. Specif-
ically, we have: _ _

Lix = D + T (7

D. Problem Formulation

This paper studies service deployment including service
caching, resource allocation and task scheduling, aiming at
minimizing monetary cost in hierarchical MEC. In summary,
the price-aware service deployment problem is formulated as:
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Here C3 means no matter which edge node is chosen for pro-
cessing tasks, the total latency is unable to exceed constraint
of corresponding service. C4 ensures storage resource usage
in each edge node could not beyond the maximal capacity.
Constraint C5 shows that computation resource allocation to
a service i in edge node k makes sense only if the service
has already been cached. Similarly, C6 assures that only
edge nodes equipped with service i are capable to receive
corresponding tasks.

It could be deduced that for any service i, there exists no
less than one edge node k makes x}f = 1. Otherwise, the
computation latency D} is always infinite and never meet
constraint C3. It ensures that every service i will be cached at
least once, so that (1) is able to be eliminated. Additionally,
constraint C4 can be rewrote as zj, > j; - A since p; > 0 is
valid for any service i. Note that A\i > 0, then u; - A} > 0.
Therefore, the inequation z}c > 0 in (4) is can be removed.

IV. ALGORITHM

In this section, we describe our proposed algorithm which
jointly optimizes service caching strategy of edge nodes,
computation resource allocation, and task scheduling. We



formulate service deployment as mixed integer non-linear
programming problem which is NP-hard and difficult to solve
directly. Therefore, we further design an Iterative Service
Deployment Algorithm by exploiting Gibbs sampling. Specif-
ically, we update service caching strategy iteratively, then
P1 is reduced to the resource allocation and task scheduling
subproblem. We further transform the subproblem into linear
programming, and solve it by a typical optimization function.

A. Iterative Service Deployment Algorithm

Gibbs sampling is one of the Markov Chain Monte Carlo
methods which applies for random variables with at least two
dimensions. It can be concluded that the sampling distribution
converges to the joint distribution by the properties of Markov
chain and transition probability matrix. In brief, we can obtain
objective joint distribution by Gibbs sampling method from
conditional distributions [32]. Gibbs sampling is a heuristic
algorithm which changes value of one individual variable in
an iteration while keeping the rest variables unchanged. After
sweeping each variable, it simulates conditional distribution
samples to infer the joint distribution of all variables. As
shown in Algorithm 1, we find out optimal service caching
strategy with the objective value of P1 (Step 7) by exploiting
the idea of Gibbs sampling. To be specific, we unite the
conditional probability distribution of service caching strategy,
then the inferred joint distribution converges to the optimal
results with high probability.

In each iteration, we select an edge node k and a valid
service caching strategy x; randomly while keeping choices
of rest edge nodes unchanged. Therefore, problem P1 will
be reduced to the resource allocation and task scheduling
subproblem with the given strategies of all edge nodes:

y 7 @ a Z]’LE
P2imin 3 3 el (L P+ g P
z2, keEieN k k
S-f-zy;‘k:l, 1eN,jeB
ke&
>z < F, ke&
ieN
%y .
e k> lGN,]CEE
Hi
i < i, ieN,jeBkcE
2, < aj, - Fy, iceN,keé&
0 <yl <, ieN,jeEBLEE
y§k€[071]. ieN,jeBkeé&

With results of problem P2, we obtain the optimal objective
e z;

value g defined as g = min . 3 ai-(—= P2+~ Pf). The
2, kEEIEN Ay F

g changes to g* when service caching strategy of edge node

k varies from xj to x;. We further have p = w7

(where w is a smooth parameter and w > 0) represents the

probability of the change from x;, to x}. Hence edge node k

remains xj; unchanged with probability 1 — p. The iteration

ends with the stop criteria is satisfied.

Algorithm 1 Iterative Service Deployment Algorithm

Input:
A, P2, Fr, PL, o, @i, Mo, i (i€ N j € Bk €€)
Output:
The optimal service caching strategy X, computation
resource allocation Z and task scheduling Y.
1: Initialize X°.
2: for iteration r = 1, 2, ... do
3:  Randomly select an edge node k € £ and a service
caching strategy x;, € Xy.

if }; is feasible then

5: Find out the computation resource allocation Z and
task scheduling Y in P2, as well as the correspond-
ing optimal objective value g, based on the service
caching strategies (z} ', ...,z ', ...,z ).

6: Find out the computation resource allocation Z* and
task scheduling Y™ in P2, as well as the correspond-
ing optimal objective value g*, based on the service
caching strategies (x| ", ..., x5, ..., mTE_l).

7: Let x;, = x} with the probability p =

&

1

1+e(9*—9)/w>
and remain T} = m;_l with the probability 1 — p.

8: end if

9:  if the stopping criteria is satisfied then

10: End the iteration and return X", Z", Y.
11:  end if
12: end for

Theorem 1: The proposed algorithm converges to the global
optimal of problem P1 with a high probability when w decreas-
es. The algorithm converges to global optimal with probability
of 1 when w — 0.

Proof: Let S = {s1,82, -+ ,8c} be the decision space
of service caching, where C is the number of all possible
alternative choices. In each iteration, we stochastically choose
a caching decision in S to the randomly selected edge node
k. Following iterations over each edge node and decision,
the service caching strategies X evolves in an E-dimension
Markov chain with k-th dimension shows service caching
decision of edge node k. We start with a simple case which
consists of 2 edge nodes, and (x1, ) represent the Markov
chain. In view of only one randomly selected edge node k
updates the caching decision from x; with arbitrary at each
iteration, we suppose the decision x; changes to x7 firstly:

Pr ((z],@2) | (w1, 22)) =
9((=1,22))

1 e w

g((z],x2))—g((x1,22))

20(1 + " T

g((z],22)) g((zl,zz)))7

20(e™ «  +e =

®)
where ¢g((x1,22)) is the objective value at caching strategy
(1, x2). Once again, we desire a minimal cost, which means
the smaller g(xy), the higher probability to choose service
caching decision x;. Thus we can rewrite (8) to draw the



above statement more suitable:
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In addition, let 6({x1,z2)) be the stationary probability
distribution at caching strategy (z1,22). Therefore, we have
a balanced equation derived from stationary condition of the
Markov chain as:

0((s1, 1)) Pr ({s1,8¢)[(s1,51))

(11)
= 0((s1,8¢)) Pr ((s1,51)[(s1, 5¢))-
Substituting (11) with (9) and (10), we have:
_9((s1,8¢))
0(<81’81>) X S1,Sc 51,8
2C(e_g(< 1w )) +e_9(< 1w 1>)) (12)
79((51151>)
= 6((s1,5c)) x PO PTG
20( ((1 c>)+€_ (<£;1>))

We find that (12) is symmetric and the set of equations are
. _ 9(a1.23)) .
balanced if 0((z1,21)) = Te «, where 7 is a constant.
Let IT be the strategy space and we make the stationary
probability distribution as:

0((x1,72)) =

_g((=y,79))
e w 1

ety

91,220 —9((el @5))

(13)
which ensures >
(z1,22) €Il

9(<I1, £E2>) =1.

Let (x}, z3) be the globally optimal service caching strategy
which minimizes the objective value. In other words, the
inequation g({x7,x3)) < g({x%,x%)) is always valid for any
(¥, xY) € II. From (13), we know that 6({z7, z3)) increases
with w decreases. Further, i;rr}) 0({xz7,x3)) = 1 proves the

algorithm can converge to the globally optimal objective value
with the probability of 1 when w — 0. The analysis can
be extended to the E-dimensional Markov chain analogously,
which ultimately fulfill the proof. [ ]

B. Resource Allocation and Task Scheduling

With the results of service caching strategy on each edge
node, we further solve the problem of how many resources
to use and how to schedule tasks among edge nodes. In this
subsection, we work out P2 by transforming it into linear
programming problem.

First of all, the allocation of storage resources is confirmed
as long as xj has been determined. Specifically, storage re-
source requirement is related to application data and databases
of the service. The requirement is relatively constant in the
given time interval, so that only computation resources affect

the deployment cost in this subproblem. The cost of resource
in edge node k is then intensively relevant to the amount of
consumed computation resources Z z;. In addition, with the

number of tasks transmitted from base stations to a certain
edge node increases, the allocated computation resources
ought to be increased accordingly, and vise versa. In other

words, it is visible to claim that Yj, and i are strongly
jeB
correlative. In order to illustrate the indirect impact of task

scheduling for cost, as well as simplify the problem, we
introduce a vector v to merge these two variables.

To be intuitive, we integrate 2; and y?; into a variable v
to turn P2 into a typical linear programming problem. Let
m = N X E+ N x E x B denote the length of v. Let v,
indicate the original z} and the range of ¢ is {1,2,..., N x E}.
We use vj, to depict the original y;k and the range of A is
{(NxE+1),(NxE+2),...,m} likewise.

We can rewrite the objective in P2 as:

v
P2* + =2
imin)_ > @i + 5
keE ieEN

where g=(i—1)x E+kand h=NXxE+ (i —1)x N x

E+(-1)xE+k(ieN,jeBkef).
We can obtain ) v, = 1 from (2), and the value range is

) ke
0 <, <, v, € [0, 1]. Besides, restrictions of computation
resources are y_ v, < Fj and v, < z% - F),. With the fact that
ieN
w; > 0, we convert the queuing method constraint to a more
typical form in linear programming: —v, < —p;-( Y. vp-A}),
j€B

and latency requirement (7}, — ®;) - (% — erh “Ap) < -1

J
We have transformed the resource allocation and task

scheduling subproblem into a linear programming problem
P2* with v. In the context of the simplification, we are able to
gain the optimal objective value easily. We are willing to take
advantage of primal-dual method with polynomial complexity
in the class of interior-point methods. Therefore, we employ
an optimization function module equipped with the method
named linprog [33], [34] from SciPy libraries'.

P,

V. SIMULATION RESULTS

In this section, we compare the performance of service
deployment cost between our proposed algorithm and three
benchmarks. We simulate the hierarchical MEC as a three-
layer network with 10 different edge nodes. The edge nodes
are equipped with diverse but limited storage resources and
computation resources. We organize five edge nodes in Layer
1, four edge nodes in Layer 2, and one edge node in Layer 3.
Besides, we set the values of parameters basically according
to [4], [5], [27], and Ali Cloud servers? (the price of resource
is calculated hourly).

Furthermore, we form the hierarchical network structure by
making a gap in value of edge node parameters over different
layers. To be specific, edge nodes in Layer 1 are empowered by

Uhttps://docs.scipy.org/doc/scipy
Zhttps://www.aliyun.com/price



fewest resources and highest price, although communication
latency to base stations is the shortest. On the contrary, the
edge node in Layer 3 has the most sufficient resources and
lowest price, but occurs the longest communication latency.
In other words, the evaluation of resources and price has
a separation between different layers, yet the difference is
smaller within the same layer. The selections in value range
of any parameter follow uniform distribution. In summary, all
the parameters are listed in Table 1.

We compare the performance on deployment cost between
our proposed algorithm and following three benchmarks.

Random: Services are cached on edge nodes randomly, that
is, we only optimize resource allocation and task scheduling
in this method.

Coarse: Service caching strategies are addressed on the
basis of Gibbs Sampling, but all the available computation
resources in the edge node are consumed without allocation
once service cached.

Greedy: Services are sorted according to latency require-
ment respectively. Latency-sensitive services have higher pri-
ority to be cached. For each base station, we calculate the
preference on edge nodes by product of latency and price.

A. Performance Comparison on Service Deployment Cost

We compare the the performance of deployment cost with
8 kinds of services and task arrival rates in the range of
[50, 80]. As shown in Fig. 2, the proposed algorithm obtains
the minimal cost after iterations. Results of Coarse is visibly
larger than others, which caused by the indiscriminate usage
of computation resources. Additionally, deployment cost of
Coarse decreases with iteration but the change is relative small,
compared with our algorithm. This is owing to tiny effect
on storage resource cost since all the computation resources
are occupied in the caching edge node. We can observe that
objective value of Random suddenly decreases sharply in
couple of iterations. The results are drawn as the stepped shape
in Fig. 2, which illustrates one of the main weaknesses, that is,
a feasible solution is difficult to reach. It will take a long time
to iterate and seek out a better objective value since alternative
solutions are massive yet selections are random. Therefore,
changes are infrequent in Random and another valid solution
is hard to explore. Furthermore, the results of Greedy can be
obtained without iteration, which leads to the straight line in
Fig. 2. We multiply price of the edge node and communi-
cation latency to each base station, the products reflect the
preference substantially. We calculate the preference on edge
nodes for each base station and transmit tasks according to
the lists. However, the result is not ideal as Greedy can only
choose one strategy in a greedy manner. Different from the
benchmarks, the proposed algorithm achieve minimal cost by
jointly considering service caching, resource allocation and
task scheduling.

Moreover, our proposed algorithm always achieves the
minimal cost with various number of services and task arrival
rates. As shown in Fig. 3(a), with the increasing service
number varies from 5 to 12, the cost tends to be higher in
general. Note that the cost tends to decrease on couple of

TABLE I: Simulation Parameters

Parameter Value

Edge node storage resource Ay [50, 200] GB

Edge node storage resource price P [10, 40] CNY

Edge node computation resource FJ, [50, 150] Giga CPU cycles/s
Edge node computation resource price Plz [10, 50] CNY

Service storage requirement a; [10, 40] GB

Service computation requirement fi;

[0.1, 0.5] Giga CPU cycles/task

Service latency requirement ®; [10, 50] ms
Communication latency T, [1, 15] ms
Smooth parameter w 106
500
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Fig. 2: Service deployment cost.

points in each method. It can be explained that we randomly
evaluate task arrival rates from [50, 80], thus computation
consumption unlikely increases with accelerate number of
services. Nevertheless, the cost increases with task arrival rates
change from 45 to 100 (the amount of arriving tasks at base
stations per second) respectively. In addition, the trend of
cost is relatively unconspicuous in Coarse with both different
number of services and task arrival rates. It also confirms
the analysis in the previous that cost of storage resource
consumption causes little difference in Coarse.
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Fig. 3: Performance comparison on service deployment cost.

B. Convergence of the proposed algorithm

According to Theorem 1, the proposed algorithm which
exploiting Gibbs sampling converges to the global optimal
with probability of 1 when w is close to 0. We illustrate the
influence of w in Fig. 4.



The total deployment cost can converge with iteration at
each w, but the objective value is smaller as w decreases
in general. The converging rate is faster when w decreases.
These observations in Fig. 4 can be explained by Step 7
of Algorithm 1 and (13). The probability of an edge node
changes service caching strategy increases in each iteration as
w decreases. Thus the smaller w, the faster that objective value
converges, and the probability approaches to 1 when w closes
to 0. In other words, the smaller w, the more probable that our
proposed algorithm converges to globally optimal results.

—_ W= 10—2
w=10"3
— w=10"*
w=10"°
— w=10"°

Monetary cost (CN

0 1000 2000

Iteration

3000 4000 5000

Fig. 4: Impact of w on the convergence of our algorithm.

VI. CONCLUSION

In this paper, we have investigated service deployment in
hierarchical mobile edge computing with three aspects: service
caching, resource allocation and task scheduling, aiming at
minimizing monetary cost. We have formulated the problem as
mixed integer non-linear programming problem and proposed
an iterative service deployment algorithm by exploiting Gibbs
sampling. We have decoupled the problem and obtain optimal
service caching strategies of edge nodes firstly. Furthermore,
we have transformed the resource allocation and task schedul-
ing subproblem into linear programming, and solve the equal
linear problem by a typical optimization function. Finally,
extensive simulations show the effectiveness and advantages
on minimizing deployment cost of our algorithm.
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