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Abstract 
 

Many factors affect the time cost of Cloud computing tasks. 

One of the most serious factors is data transmission latency, 

which reduces the efficiency of Cloud computing. Many 

notable schemes that have been proposed to overcome this 

factor ignore the communication cost among virtual 

machines (VMs) in the MapReduce environment. In this 

paper, we propose a VM placement approach to reduce 

data transmission latency by focusing on the 

communication cost among VMs. In this approach, we 

first propose two VM placement optimization algorithms 

to minimize the total data transmission latency and the 

maximum data transmission latency in the MapReduce 

environment. Then, we use the algorithms to place VMs 

for Map and Reduce phase. Finally, we analyze the time 

complexity for our approach. We implement our approach 

by simulation. The simulation results show that our 

approach reduces the average data transmission latency by 

26.3% compared with other approaches. 
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1 Introduction 
MapReduce is a programming model and an associated 

implementation for processing and generating large data 

sets with a parallel, distributed algorithm on a cluster [1]. It 

is based on the common use of Map and Reduce operations 

in functional programming. The model undertakes 

efficient parallel computing through a large number of 

data nodes and computation nodes for data intensive Cloud 

application. The total completion time is an important 

performance metric for Cloud application. There are many 

influencing factors for the completion time, such as 

communication bottlenecks, the load of servers, etc. 

However, the main impact factor is the transmission 

latency between data nodes and computation nodes. As the 

time cost of each (MapReduce) task can affect the 

economic benefits of cloud service providers, it is 

important and needs to be optimized. Meanwhile, the time 

cost is mainly determined by the data transmission latency 

between data nodes and VMs. Hence, reducing the data 

transmission latency is a primary problem for Cloud 

service providers [2, 3]. 

The data transmission latency of a given task is the 

time that data need for transmission from the relevant data 

nodes to computation nodes. The placement of the VMs 

exerts a tremendous influence on data transmission latency. 

A bad placement may lead to quite large transmission 

latency. The basic VMs placement schedule has two 

aspects. One is placing the VMs to the data nodes in which 

the data is stored, and the other is moving the data to 

computation nodes in which the VMs are located. 

However, neither of them is always feasible. As it is 

difficult to store data locally in most cases, we often 

encounter large data transmission latency. Some notable 

schemes have been proposed to minimize the latency by 

appropriate VMs placement ([4], [5], [6], [7]). These 

approaches generally choose some VM cliques, and then 

assign the chosen cliques to data nodes. Nevertheless, 

there are mainly four shortcomings in those approaches. 

1) The previous approaches minimized transmission 

latency under the case that communication exists among 

each VMs. However, the latency among VMs only exists 

between the Map VMs and the Reduce VMs, that is to say, 

any two VMs in the same layer(Map or Reduce) do not 

need to communicate with each other for data exchanging 

(MapReduce contains Map layer and Reduce layer). Only 

the VM in the Map layer can accept data from the data 

node. VMs in the Reduce layer cannot receive data directly 

from the data node, but can accept data from Map layer 

VMs. Thus VMs which belong to the same layer do not 

have communication with each other at all. Data 

exchanging only occurs between VMs belonging to 

different layers. So, we just need to consider the latency 

between VMs which belong to different layers when we 

optimize the data transmission latency. 

2) Existing VM placement approaches often choose 

the intensive VMs which are far from data nodes rather 

than the sparse VMs which are around data nodes. When 

the distribution of VMs is homogeneous, these existing 

approaches are effective. However, VMs distribution is 

often heterogeneous in practical applications. Because the 

previous approaches give priority to transmission latency 

among VMs (Map or Reduce) rather than latency between 

data nodes and Map VMs, these approaches will choose 

the more intensive VMs as Map VMs instead of the sparse 

VMs. When plenty of intensive VMs are far from data 

nodes and a small number of sparse VMs are near to data 

nodes, choosing the further and intensive VMs may 

significantly increase the data transmission latency. This 

will become more serious in the case that the latency 



between data nodes and VMs is much bigger than the 

latency among VMs. 

3) The time complexity (we analysis time complexity 

in the Appendix A) of existing VM placement approaches 

is very high. If the number of available VMs is n, then the 

approaches will create n cliques (each VM is the center of 

its clique). To find the total shortest data transmission 

latency between data nodes and VMs, the placement 

algorithm must be repeated n times. When n is very large, 

the time complexity of previous approaches becomes 

extremely high. 
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Figure.1  Both VM A and B satisfy the constraint of clique selection. 

However, only one of them will be added into the clique, since 

the latency between them exceeds the threshold. 
 

4) The previous approaches are not totally correct and 

appropriate. When the radius of the clique is small, the 

approaches get many repeated cliques and the VMs in 

clique may be not sufficient for data nodes, which mean a 

low efficient work. When the radius of the cliques is too 

large that contains massive VMs, it means that the radius is 

out of action. In addition, it can encounter an unequal case. 

As shown in Figure 1, the small circles represent 

computation nodes (VMs), and the small circles in big 

round wire represent the VMs which have been added to 

clique. Now we judge if A and B should be added to clique. 

We assume that the latency between A and any VM in 

circle is below the clique selection threshold, and it is the 

same to B. It looks like both A and B should be added to 

clique. However, the latency between A and B is beyond 

the threshold, which means A and B cannot be added to the 

clique together and only one of them can be added to the 

clique. If choose A to be added, it is not fair for B, and vice 

versa. The previous approaches cannot judge which one 

should be added to clique. 

To overcome these shortcomings, we propose a novel 

VM placement optimization approach to minimize the data 

transmission latency. We first propose two VM placement 

optimization algorithms to minimize the total data 

transmission latency and the maximum data transmission 

latency. The first optimization is modeled as a linear sum 

assignment problem (LSAP), and the second is formulated 

as a linear bottleneck assignment problem (LBAP). Then 

we use the algorithms to place VMs for Map and Reduce 

phase. The Reduce phase is based on the Map phase and 

the inter-VM latency. At last, we analyze the time 

complexity of our approach and the previous approaches. 

Compared to previous work, we decrease the data 

transmission latency between data node and its assigned 

Map VM enormously, and place VMs for Reduce phase in 

a fine grain level in heterogeneous environment. We also 

decrease the time complexity of VM placement approach. 

We evaluate our approach by massive simulation, and 

compare our approach with previous approaches in terms 

of the total data transmission latency, maximum data 

transmission latency, and time complexity. The 

experimental results show that our approach is superior to 

previous approaches. 

The rest of this paper is organized as follows. First, in 

Section 2, we discuss some related work. We then present 

our novel VM placement optimization approach in Section 

3. Section 4 describes the simulation results and studies the 

impact of various parameters. Finally, we conclude the 

paper in Section 5. 

 

2 Related Work 
Many researchers have proposed approaches that aim 

to minimize data transmission latency. Because of space 

constraints, we only review some notable approaches. 

1) Minimization of time cost. The Cloud workflow is 

minimized in [8, 9], Pandey et al. [9] proposed an online 

linear programming model to minimize the data retrieval 

and time cost of data-intensive workflows in clouds. The 

model retrieves data from the storage of the cloud. The 

time cost of communication is proportional to the data 

volume. Based on the storage and computing resources of 

the cloud, the application is modeled as a workflow. 

Compared with Amazon CloudFront’s “nearest” single 

data source selection, this model reduces the time cost of 

multiple executions by 75%. Feng et al. [10] presented an 

online optimization problem that minimizes the 

operational time cost using a store-and-forward procedure 

at intermediate nodes on the inter-datacenter traffic. By 

restricting data transmission to a time-slotted model, the 

problem was formulated on a time-expanded graph and 

solved by convex optimization solvers. As we all know, 

minimizing the time cost equals to maximizing the 

economic profits. A dynamic virtual resource renting 

approach has been introduced that adopts outlier detection 

to filter extreme prices [11, 12]. This method utilizes a 

weak equilibrium operator for the virtual resources, and a 

novel rental decision-making algorithm to select the most 

profitable resource. 

2) Minimization of data latency in Hadoop [13, 14]. 

MapReduce processes many tasks in parallel. Thus, the 

completion time of a job is determined by the last finished 

task. Hadoop is an open-source implementation of 

MapReduce whose scheduler suffers from performance 

degradation in heterogeneous environments [15]. Zaharia 

et al. [16] designed a new scheduling algorithm to 

minimize the data transmission latency, and this improves 

Hadoop’s response time enormously. Lin et al. [17] 

showed that a distributed cache can be adapted to Hadoop, 

and provide a feasible, scalable, and general-purpose 

solution. A system called Mantri has been developed that 



uses a cause-and-resource-aware technique to monitor 

tasks and cull outliers [18]. This system considers a 

judicious arrangement with network bottlenecks, and uses 

a greedy algorithm to arrange Hadoop tasks and minimize 

data latency. Mantri decreases job completion times to 

32%. 

3) Minimization of data transmission by VM 

placement[19, 20]. Isard et al. [21] introduced a new, 

graph-based VM placement for the real-time distributed 

scheduling of jobs with fine-grained resources. As fairness 

and locality generally conflict, this scheme delays a VM’s 

execution until the resource is available, which increases 

the probability of data local access? The proposed VM 

placement is assumed to operate on a fine-grained 

timescale, with fairness and locality reflected by the edge 

weights in the graph model. The method is then 

transformed into a min-cost flow problem. Zaharia et al. 

[22] presented a simple VM placement algorithm called 

delay scheduling to solve the conflict between fairness and 

locality. When fairness prevents a local VM task from 

being launched, other VM tasks are launched instead. 

Greenberg et al. [23] shows that it is important to retain a 

balance between fairness and locality. Kuo et al. [24] first 

propose a 3-approximation algorithm for minimizing the 

maximum data transmission latency. Subsequently, they 

close the gap by proposing a 2-approximation algorithm, 

which is an optimal approximation algorithm for resolving 

the problem in the price of higher time complexity. 

However, their optimization objective isn't totally same 

with ours. Alicherry and Lakshman [4] introduced an 

optimization approach based on VM placement. They 

considered the VM placement with and without inter-VM 

constraint. The established model assumes that the 

relationship among VMs satisfies the triangle inequality. 

This means that communication occurs between any two 

VMs. However, this is not suitable for MapReduce 

because latency only exists between VMs in different 

layers. The VM of Map can communicate with VM of 

Reduce, but it is impossible when the VMs come from the 

same layer. The Hungarian algorithm [25] is used to solve 

the assignment problem. When intensive distribution of 

VMs is far from the data nodes and sparse distribution of 

VMs is closer, this approach always chooses the 

intensively distributed VMs instead of the sparsely 

distributed VMs, which increases the data transmission 

latency significantly. When the inter-VM constraint is 

added to the problem, it becomes NP-hard. This case can 

be solved heuristically, but the characteristics of the 

heuristic algorithm mean there is a considerable amount of 

redundant time.  

To the best of our knowledge, no previous method has 

considered the real relationship among the VMs in 

MapReduce. The latency only exists between VMs in Map 

layer and Reduce layer. Moreover, previous VM 

placement techniques often neglect sparse VMs that are 

close to the data nodes, and have very high time 

complexities. Hence, the data transmission latency has not 

been efficiently optimized.   

 

3 Proposed Approach 
In this section, we introduce an effective approach for 

the placement of VMs. First, we propose two optimization 

algorithms to minimize the total data transmission latency 

and the maximum data transmission latency. Then, we 

propose an approach to place VMs for Map and Reduce 

layer. We analyze the time complexity of our approach and 

the previous approach in the appendix. The notation used 

in this section is defined in Table 1. 

 
Table 1 NOTATIONS 

 

Symbol Meaning 

CM Placed Map VMs 

CR Placed Reduce VMs 

m
 

Cardinality of the data nodes and VMs of 
Map 

n Cardinality of computation nodes 

k Cardinality of Reduce 

Di    Data nodes     

V V is the left vertex set of G = (V∪W; E); it 
represents data nodes 

W W is the right vertex set of G = (V∪W; E); 

it represents computation nodes 

E E is the edge set between the two vertex 

sets 

w(i, j) Data transmission latency between Vi and 

Wj in G = (V∪W; E) 

C
 

Set of all computation nodes 

CpM 
 

Set of pre-Map VMs 

t1

 
Threshold for pre-Map VMs selection 

t2 Threshold for Reduce VMs selection 

t3 Maximum data transmission latency 
threshold  

t4 Total data transmission latency threshold  

ija
 

Parameter with a value of 1 when Vi is 

assigned to Wj; 0 otherwise  

G G = (V∪W; E), where V is the left vertex 
set, W is the right vertex set, and E is the 

edge set between the two vertex sets 

G’ G’ = (V’∪ W’; E’) is a subgraph of G with  

V’ V, W’W, E’ E 

GM Maximal perfect matching of G 

G’M
 

G’M= (V’M∪ W’M ; E’M) is a matching of 
G’ 

wmin Minimum of w(i, j) 

wmax Maximum of w(i, j) 

wmid The minimal maximum data transmission 

latency 

wmid1,2 The middle variable between wmin and 
wmax 

lV[i] Label for Vi 

lW[j] Label for Wj 

O O=1 (if the objective is Object 1) 

O=2 (if the objective is Object 2) 

 

We consider the data transmission latency under a 

distributed cloud environment. There are two resources in 

the datacenter: data nodes and computation nodes(VMs). 

Information is stored in the data nodes by cloud users. 

When the data is needed for computation, we should 

assign appropriate VMs for each data node. In our scenario, 

the distribution of data node is fixed. The only thing that 

we should consider is how to place the VMs for Map and 

Reduce layer, respectively. We assume that one VM can 

access data from one data node and only Map layer VMs 



can accept data from the data nodes. VMs of the Reduce 

layer cannot receive data from the data nodes directly, but 

they can accept data from VMs in the Map layer. A VM 

cannot communicate with another VM in the same layer. 

Therefore, inter-VM latency only exists between the Map 

and Reduce VMs. In Section 3.1, we propose an algorithm 

which is used to minimize the total data transmission 

latency under data transmission latency threshold. Section 

3.2 introduces another algorithm which minimizes 

maximum data transmission latency under total data 

transmission latency threshold. In Section 3.3, we describe 

an approach of VMs placement for Map and Reduce layer. 

3.1 Minimize the total data transmission latency 

The total data transmission latency has a deep influence on 

the total bandwidth cost. Cloud service provider and user 

both hope the bandwidth cost as low as possible. 

Minimizing the total data latency can effectively reduce 

the bandwidth cost. However, as a result of conflict 

between local optimization and global optimization, 

minimizing the total data transmission may increase the 

maximum data transmission latency of links. If this case 

occurs, job completion time will be delayed, and all the 

other tasks will be waiting for the slowest task. Hence, we 

must set a threshold for maximum data transmission 

latency of links to get a tradeoff. Links whose data 

transmission latency is above the threshold will be 

removed before the total data transmission latency 

optimization. As a result, we have two constraints: the 

maximum data transmission latency constraint and 

minimizing the total data transmission latency constraint. 

Considering our focus is the data transmission latency 

among the nodes, we construct a bipartite graph G = (V∪
W; E) to model the distribution and relationship of data 

nodes and computation nodes. In the bipartite graph G = (V

∪W; E), V is the left vertex set, it represents data nodes. W 

is the right vertex set, it represents computation nodes, and 

E is the edge set between the two vertex sets. w(i, j) is the 

weight between Vi and Wj, whose value equals to the data 

transmission latency between them. We assume the 

number of data nodes is m ,and the number of computation 

nodes is n. Commonly, we have m<n. To simplify the 

problem, we increase the cardinality of data nodes to n, 

which makes the cardinalities of data nodes and 

computation nodes are same to each other. The dummy 

nodes have the weight (latency) of ∞ with other nodes. 

In the mathematical discipline of graph theory, a 

matching or independent edge set in a graph G = (V∪W; E) 

is a set of edges without common vertices. It may also be 

an entire graph consisting of edges without common 

vertices. Specially, if each Vi has a corresponding Wj and 

vice verse, we call the matching as a perfect matching [26, 

27]. Our aim is to get the perfect matching of V and W 

under the two constraints stated above. 

Hungarian algorithm is a famous algorithm for 

bipartite graph matching. However, it can only get a 

maximum matching for the bipartite graph. Our aim is to 

find the matching which has the minimum sum of the data 

transmission latency. Thus, we propose an improved 

algorithm to match the bipartite graph G and get the 

minimum total data transmission latency. For this, we 

construct a Linear Sum Assignment Problem (LSAP) [28, 

29] to describe it. w(i, j) is the latency (weight, edge) of Vi 

and Wj, aij only have two value. If Wj is assigned to Vi, aij 

has the value of 1. Otherwise, its value is 0. Formula (1) is 

minimizing the total data transmission latency. Equation (2) 

shows that each Wj is assigned to a single Vi, and Equation 

(3) shows that each Vi only accept one Wj for matching. 

Equation (4) indicates that the value of aij is either 1 or 0. 

1 1 ( , )n n

i j ijMinimize w i j a   
            



subject to: 

1 1 1,...,n

i ija for all j n                  

1 1 1,...,n

j ija for all i n                 (3) 

{0,1} , 1,...,ija for all i j n               (4) 

Actually, Formula (1) is a minimal weight matching 

problem (“minimal weight” represents the minimal sum of 

the weights). Since each weight is positive number, the 

minimum sum of the weights equals to the maximum sum 

of the weights' negative values. Then, the problem is 

transformed to a maximal weight matching problem. For 

convenience, we mark each Vi and Wj with labels (lV[i] and 

lW[j]), and any w(i, j) satisfies lV[i]+ lW[j]≥w(i, j) at any 

time in our proposed algorithm. By labeling Vi and Wj as 

lV[i] and lW[j], we can transform the maximal weight 

matching problem to maximal perfect matching problem. 

We use the proposed algorithm in this section to get the 

maximal perfect matching, which is the minimum total 

data transmission latency of bipartite graph. The algorithm 

is supported by the following theorem: 

Theorem: In the bipartite graph, if the sub-graph 

whose weights satisfy lV[i]+ lW[j]=w(i, j) (the sub-graph is 

called equal sub-graph) and have a perfect matching. 

Then, the perfect matching is the maximal weight matching 

of the bipartite graph. 

Proof: For G=(V ∪ W; E),G'=(V' ∪ W'; E') is a 

sub-graph of G. G'M=( V'M∪W'M; E'M) is a matching of G'. 

If G'M is belong to a equal sub-graph, it satisfies the 

equation:∑w(i, j)=∑(lV[i]+ lW[j]). However, if G'M have 

weight which is not belong to equal sub-graph, it satisfies 

the equation:∑w(i, j)<∑(lV[i]+ lW[j]).Thus, the perfect 

matching of equal graph must be the maximal weight 

matching of the bipartite graph. 

We use the following steps to solve the transformed 

problem of Formula (1). 

Step1: Firstly, to reduce the value of maximum data 

transmission latency, we reconstruct the bipartite graph G 

= (V∪W; E) to satisfy the threshold constraint. In the 

algorithm, we use t to denote the maximum data 

transmission latency threshold. If w(i, j)> t, we pruning it 

out of the bipartite graph G. After this step, we get a new 

bipartite graph with all weights satisfying the maximum 

data transmission latency threshold. (Line 1-5) 



Step2: We use the negative value of each weight, by 

which we transform the minimal weight matching to 

maximal weight matching. (Line 6) 

Step3: We initialize the label value of Vi and Wj. Since 

the problem has been changed to maximal weight 

matching problem, we initialize lV[i] with the maximum 

weight of Vi and Wj (j=1....n). We initialize lW[j] with 0. By 

doing this, we can make sure lV[i]+ lW[j]≥w(i, j). (Line 

7-10) 

Step4: We use Hungarian Algorithm to equal 

sub-graph of G to find the maximum matching. We get a 

maximum matching GM. (Line 11-12) 

Step5: If GM is a perfect matching, the proposed 

algorithm is finished and GM is the minimum weight 

matching. (Line 13-14) 

Step6: On the contrary, if GM isn't a perfect matching, 

we will revise the label lV[i] and lW[j] to enlarge the equal 

sub-graph. After the revising, it goes to Step4. We repeat 

Step4 - Step6 until we get the perfect matching. (Line 

15-26) 

Algorithm 1:Minimizing total latency with maximum 

latency threshold 

Input: G=(V∪W; E) bipartite graph; maximum data 

transmission latency t; w(i, j) is the weight between Vi 

and Wj; lV[i] is the label of V, lW[j] is the label of W. 

Output: bipartite matching GM with minimum total 

latency 

Note: An alternating path is a path in which the edges 

belong alternatively to the matching and not to the 

matching. 

1. for all w(i, j) do 

2.    if w(i, j)>t 

3.       Pruning w(i, j) out of E 

4.    end if 

5. end for 

6. w(i, j)=-w(i, j) // we use negative value of each weight  

7. for all lV[i], lW[j] do 

8.   lV[i]=Max(w(i, j)) 

9.   lW[j]=0 

10. end for 

11. for G=(lV∪lW; E) do 

12.   use Hungarian Algorithm to match G  GM 

13.   if ( GM is a perfect matching where lV[i]+ lW[j]=      

w(i, j))  

14.      break 

15.   else 

16.   for all (lV[i]   alternating tree, lW[j]        

alternating tree)  

17.         d=Min[lV[i]+ lW[j]- w(i, j)]  

18.      end for 

19.      for all lV[i] , lW[j]  alternating tree 

20.         lV[i]= lV[i]-d 

21.         lW[j]= lW[j]+d 

22.      end for 

23.   continue 

24.   end if 

25. end for 

26. Return GM 

Through Algorithm1, we minimize the total data 

transmission latency with maximum data transmission 

latency threshold, which could maximize the profit of 

Cloud Service Provider at the same time. 

3.2 Minimize maximum data transmission latency 

Tasks are processed totally parallel in MapReduce. Thus, 

the total completion time of a job is determined by its 

slowest task. The slowest task always has maximum data 

transmission latency. Minimizing the maximum data 

transmission latency can tremendously decrease the 

completion time of job. However, minimizing the 

maximum data transmission can't ensure small total data 

transmission latency. They are conflict with each other. 

For the whole equality, we set a threshold to limit the total 

data transmission latency. Our aim is to minimize the 

maximum data transmission latency under the total data 

transmission latency threshold, which can help us to 

achieve a trade-off. 

In this section, the bipartite graph is perfectly matched 

under the total latency threshold constraint. The problem 

can be described as Linear Bottleneck Assignment 

Problem (LBAP), which also known as a Bottleneck 

Maximum Cardinality Matching [30, 31]. Formula (5) is 

minimizing the maximum data transmission latency. 

Equation (6) shows that each Wj is assigned to a single Vi, 

and Equation (7) shows that each Vi only accept one Wj for 

matching. Equation (8) indicates that the value of aij is 

either 1 or 0. Equation (9) is the weight matrix. 

,

, 1max ( )i j n

i j ijMinimize w i, j a

 
                  

(5)
 

subject to 

 1 1 1,...,n

i ija for all j n                    (6) 

1 1 1,...,n

j ija for all i n                       (7) 

{0,1} , 1,...,ija for all i j n                   (8) 

{ ( , )}W w i j W is n n fixed coefficient matrix      (9) 

To minimize maximum data transmission latency, we 

propose the following algorithm to solve this problem. The 

specific steps are shown as follows: 

Step1: First, we sort the edges according to their 

weights w(i, j), and order them as non-decreasing sequence. 

(Line 1) 

Step2: We initialize the value of wmid1, wmid2, wmin, wmax, 

wmid and E for binary search. (Line 2-7) 

Step3: In this step, we use binary search to find the 

minimal maximum data transmission latency wmid of the 

perfect matching GM. We first use Hungarian Algorithm to 

get the matching GM. If GM is not a perfect matching, we 

revise the value of wmid1 and E. Otherwise, we revise the 

value of wmid2. (Line 8-19) 

Step4: The GM which we get in step 3 is a perfect 

matching. Threshold t is used to reduce the total data 

transmission latency of GM. If its total transmission latency 

is above the threshold t, it will return an “error”. Or else, 



GM is the bipartite matching with minimal maximum data 

transmission latency. (Line 20-24) 

Algorithm 2:Minimizing maximum latency with total 

latency threshold 

Input: G=(V∪W; E) bipartite graph; total data 

transmission latency t. w(i, j) is the weight between Vi 

and Wj; 

Output: the minimal maximum latency wmid 

 

1. Sort all the w(i, j) as a non-decreasing sequence 

2. wmin=Min(w(i, j)) 

3. wmax=Max(w(i, j)) 

4. wmid1=wmin 

5. wmid2=wmax 

6. wmid=0 

7. E=[wmin, (wmid1+ wmid2)/2] 

8. while (wmid1 < wmid2) 

9.    wmid = (wmid1 + wmid2)/2 

10.   E=[ wmin, wmid ] 

11.   use Hungarian Algorithm to match G(V∪W; E)   

GM =(VM∪WM; EM) 

12.   if (GM is not a perfect matching) 

13.      wmid1=wmid 

14.    continue 

15.  else 

16.    wmid2=wmid 

17.    continue 

18.  end if 

19. wend 

20. if (the total data transmission latency of GM >t) 

21.   Return “error”  //no bipartite matching satisfies our 

constraint. 

22. else   

23.   Return wmid  

24. end if 

 

Using Algorithm 2, we can minimize the maximum 

data transmission latency, which could enormously 

decrease the completion time of job. 

3.3 VM placement for Map and Reduce 

3.3.1 VM classification  

VM classification is extremely important to the overall 

optimization. Since our aim is to reduce data transmission 

latency between data nodes and VMs of Map layer, we 

should choose the VMs with short data transmission 

latency to the data node for Map layer firstly. As to the 

Reduce VMs, they are just required to be near the Map 

VMs since they only have communication with Map layer. 

The Reduce VMs placement is determined by the VMs 

placement of Map phase. By VM classification, we can get 

an accurate selection range of VMs which is called 

pre-Map. We get Map VMs from pre-Map through the 

algorithms stated above. The threshold t1 which we use to 

get pre-Map is determined by cloud users. As shown in the 

following procedure, we classify VMs as the pre-Map 

layer CpM and the other part C-CpM based on their latency 

and threshold t1. Since the relationship between the data 

nodes and the Map VMs is one-to-one, we add the 

computation node Cj into CpM , when: Cj∈C, weight (or 

edge) w(Di, Cj)≤t1. We keep doing this until no VM 

satisfies the threshold constraint. As a result, the VMs are 

classified to pre-Map and the remaining part. 

3.3.2 VM placement 

The complete VM placement includes the Map phase and 

Reduce phase. In this section, we place VMs of Map and 

Reduce for two objectives. The first objective is 

minimizing the total data transmission latency in 

MapReduce, and the second is minimizing the maximum 

data transmission latency in Mapredcue. We use 

Algorithm 1 for the first objective and Algorithm 2 for the 

second objective. In our assumption, the Reduce phase 

starts after the Map phase. Thus, the Reduce VMs will be 

placed based on the VM placement of Map. The output of 

VM placement for Map is the input of VM placement for 

Reduce. In our scenario, the relationship between data 

nodes and Map VMs is one-to-one, and the relationship 

between Map and Reduce is many-to-many. The number 

of Reduce VMs is denoted as k, which is determined by the 

users. In the next paragraph, we start to place the VMs of 

the Reduce layer. 

To determine the VM placement for the Reduce task, 

we propose the following method. Since the relationship 

between the Map and Reduce layers is many-to-many, we 

should make sure each VM of Reduce as near as possible 

to VMs of Map. We set a threshold t2 to limit the data 

transmission latency between Map and Reduce. We 

choose VMs from the remaining set C-CM for the Reduce 

layer. If the weights(latency) between a VM of C-CM and 

VMs of Map layer are all below t2, we add the VM into CR 

( CR denotes the VMs set of Reduce). Finally, we adjust the 

value of t2 until the number of VMs in CR reaches k. 

3.3.3 Procedure description 

The whole steps of VMs placement for Map and Reduce is 

as follows: 

Step1: We classify the VMs as pre-Map and the 

remaining part based on their weight (data transmission 

latency) with data nodes. (Line 1-8) 

Step2: If the optimization objective is minimizing the 

total data transmission latency with maximum data 

transmission latency threshold t3, we use Algorithm1 to 

place VMs for data nodes (D). We can get the VMs of Map 

layer (CM) at the same time. Otherwise, we use Algorithm 

2. (Line 9-13) 

Step3: We place VMs for Reduce layer after the Map 

phase. We adjust t2 until the number of CR equals to k. 

(Line 14-34) 

Procedure 1 :VM placement for Map and Reduce 

Input: G=(D∪C; E); threshold t1, t2, t3 t4;Object O  

Output: the placed VMs of Map and Reduce: CM and 

CR 

Note: We use Algorithm1 for Objective 1, and 

Algorithm 2 for Objective 2 

1.  CpM=0 

2.  for all Di∈D do 

3.      for all Cj∈C 

4.          if w(i, j)≤t1 

5.             CpM=CpM∪Cj  

6              break 



7.         end if  

8.     end for 

9.  end for 

10.. if (O==1) 

11.    use Algorithm 1 to [G=(D∪CpM; E),t3]→GM=（D

∪CM; EM） 

12. . else 

13.    use Algorithm 2 to [G=(D∪CpM; E),t4]→GM=（D

∪CM; EM） 

14.  end if 

15.  for decrease t2 

16.      CR=0 

17.      for all Cj∈C-CM do 

18.          F=1 

19.          for all Ci∈CM do 

20.              if w(i, j)>t2 

21.                  F=0 

22.               break 

23.               end if  

24.           end for 

25.           if (F==1) 

26.               CR=CR∪Cj 

27.           end if 

28.       end for 

29.       if (CR > k) 

30.           continue 

31.       else 

32.           break 

33.       end if 

34.  end for 

35.  Return CM and CR 

 

4 Experiments 
In this section, we compare our proposed method with 

a conventional approach in terms of total data transmission 

latency and maximum data transmission latency. 

Moreover, we also study the parameters of our approach. 

4.1 Experimental Setup 

Our experiments are set up exactly the same way as the 

simulation setup of [4]. We set up a datacenter with 1024 

racks and divide the racks into 64 blocks. Racks belonging 

to the same block can communicate with each other  

one switch. The 64 blocks are then divided into 16 groups. 

Racks belonging to the same group but not the same blocks 

can communicate with each other via three switches. Then, 

the 16 groups are divided into four parts. Racks that belong 

to the same part but not the same group can communicate 

with each other via five switches, whereas racks belonging 

to different parts can communicate with each other 

through seven switches. We assume the latency between a 

data node and VM as follows: To compare with the 

previous approach, we set the same experimental 

parameter with [4]. We get a random number in the range 

[0.75, 1.25], and multiply it by the number of switches 

between the data node and VM. In our simulation, the 

distribution of VMs is intensive when they are far from 

data nodes, and it is sparse when they are closer. We 

conducted various experiments for 16, 64, 256, and 1024 

racks, and varied the number of data nodes from 10 to 80 

multiples of 10. The number of VMs varied from 40 to 120 

in steps of 5. Data nodes and VMs were placed into the 

racks at random. We compare our approach with a 

previous approach that places VMs with the triangle 

inequality constraint [4]. We denote the previous approach 

as VSTI (VM selection by triangle inequality). Our 

approach as VSMR (VM selection by Map and Reduce). 

As different number of data nodes has the similar trend, we 

show the experiment results of 40 data nodes in this paper. 

4.2 VM distribution analysis 

In this section, we compare the effect of our approach with 

the previous approach. Figure 2 and Figure 3 are 

diagrammatic sketches which simulate the distribution of 

data nodes and computation nodes. The x-axis and y-axis 

represent for an abstract range. The distance between two 

nodes is proportional with the transmission latency. In the 

figures, the squares represent the data nodes, and the small 

dots represent the computation nodes(VMs). The bigger 

rounds represent the VMs which are placed for the data 

nodes according to the placement algorithms. The two 

figures show the result that the total data transmission 

latency and maximum data transmission latency of Figure 

3 are shorter than Figure 2. Since the VSTI takes more care 

on the inter-VM data transmission latency, it ignores the 

data transmission latency between data nodes and VMs. 

 
Figure.2 The VM placement result of VSTI. The distribution of VMs is 

 intensive when they are far from data nodes and sparse when they are closer. 

 
Figure.3 The VM placement result of VSMR. The distribution of VMs is  

intensive when they are far from data nodes and sparse when they are closer. 



 
Figure.4 VSTI vs VSMR in minimizing total data transmission latency for  
different number of pre-Map VMs and 40 data nodes. 

 
Figure.5 VSTI vs VSMR in minimizing maximum data transmission  

latency for different number of pre-Map VMs and 40 data nodes. 

  

 
Figure.6 The total data transmission latency for different threshold t1  

using VSMR 

 
Figure.7 The maximum data transmission latency for different threshold  
t1 using VSMR 

 
Figure.8 The total data transmission latency for different threshold t3  

using VSMR 

 
Figure.9 The trend of minimized maximum data transmission latency  
for different threshold t4 using VSMR 

 

Hence, the VSTI places the further VMs for data nodes in 

Figure 2. However, our approach focuses on the data 

transmission latency between data nodes and VMs, and 

places the near VMs for the data nodes. Then, the 

transmission latency of Figure 3 is shorter. 

4.3 Total data transmission latency 

Figure 4 shows that VSMR reduces the average total data 

transmission latency by 26.3% over VSTI when the 

number of pre-Map VMs ranges from 40 to 95. Since 

VSTI focuses on the inter-VM relationship, when the 

number of pre-Map VMs is small, it is impossible to 

choose all the VMs that are near to the data nodes. 

However, VSMR takes the relationship between the VM 

and data node as selection constraint for the pre-Map VMs. 

As a result, VSMR choose more near VMs than VSTI. 

When the number of pre-Map VMs ranges from 95 to 120, 

the cardinality of the pre-Map equals to the total number of 

VMs, and both approaches have the same total data 



transmission latency. With the increase of the racks, since 

the range of VMs become larger, the total data 

transmission latency is higher. 

4.4 Maximum data transmission latency 

Figure 5 shows that VSMR reduces the maximum data 

transmission latency of VSTI by 41.2% when the number 

of pre-Map ranges from 40 to 95. Since VSTI is limited by 

the inter-VM constraint, many VMs that are sparsely 

distributed but near to data nodes are not chosen. Instead, 

VSTI chooses the pre-Map VMs that are sparsely 

distributed but far from the data nodes, which adversely 

affect the maximum data transmission latency. Since 

VSMR always choose the near VMs, VSMR is superior 

than VSTI. When the number of pre-Map VMs reaches 90, 

since the approaches already choose the nearest VMs for 

pre-Map, the maximum data transmission latency remains 

steady. 

4.5 Study on parameters 

In this section, we study the effect of parameters including 

t1, t3, and t4 (t2 doesn't affect the two objectives.) on total 

data transmission latency and maximum data transmission 

latency. 

4.5.1 Parameter t1 

In Figure 6, the total data transmission latency initially 

rises and then stabilizes. When t1 is small, the VMs are not 

sufficient for data nodes. As the threshold t1 increases, the 

bipartite graph can be perfectly matched. Since VSMR 

accurately obtains the closer VMs, the total data 

transmission latency remains steady, although t1 continues 

to increase. 

Figure 7 shows that the maximum data transmission 

latency increases continuously until t1 is sufficiently large. 

As t1 increases, the number of pre-Map VMs also increases. 

Then, VMs with high data transmission latency are added 

into the pre-Map set. This inevitably increases the 

maximum data transmission latency. After t1 exceeds a 

certain value, the maximum data transmission latency 

remains unchanged. 

4.5.2 Parameter t3 

Figure 8 illustrates the relationship between the maximum 

data transmission latency threshold t3 and the total data 

transmission latency. The total data transmission latency 

increases along with threshold t3. As t3 increases, the 

farther VMs are added into the pre-Map set. As a result, the 

total data transmission latency increases. When t3 reaches 

a certain value, the total data transmission latency remains 

constant. 

4.5.3 Parameter t4 

Figure 9 shows that the maximum data transmission 

latency increases before stabilizing. This is because the 

farther VMs are added into the pre-Map VMs, which gives 

rise to higher maximum data transmission latency. In the 

case of 16 racks, when t4 exceeds 30, the maximum data 

transmission latency remains constant. A similar case can 

be observed for 64, 256, and 1024 racks. 

5 Conclusions 
In this paper, we have proposed an approach to optimize 

data transmission latency through VM placement. Our 

approach first proposes two optimization algorithms to 

minimize the total data transmission latency and maximum 

data transmission latency. Then, we classify VMs to 

pre-Map and other parts based on their latency with the 

data nodes. We use the two algorithms to place VMs for 

Map phase. Finally, we place VMs for Reduce phase based 

on the inter-VM data transmission latency and VMs of 

Map phase. Compared to previous approaches, our 

approach has three main advantages. Firstly, the 

communication among VMs in our model is suitable for 

MapReduce. Secondly, the VMs with sparse distribution 

around the data nodes are efficiently utilized under 

MapReduce. Thirdly, our approach reduces the time 

complexity and data transmission latency enormously. The 

experimental results show that our approach reduces the 

average data transmission latency by 26.3% compared 

with other approaches. 

However, the approach also can be improved further. 

The VM placement of Reduce phase can be more 

fine-grained through a new model. After this, the latency 

between Map phase and Reduce phase would be shorter. 
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