
Virtual Machine Placement to Minimize Data Transmission Latency in

MapReduce

Jie Wei, Shangguang Wang, Lingyan Zhang, Ao Zhou, Qibo Sun and Fangchun Yang

State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications

Haidian, Beijing, 100876, China

{wjwb; sgwang; zhanglingyan; aozhou; qbsun; fcyang}@bupt.edu.cn

Abstract

Many factors affect the time cost of Cloud computing tasks.

One of the most serious factors is data transmission latency,

which reduces the efficiency of Cloud computing. Many

notable schemes that have been proposed to overcome this

factor ignore the communication cost among virtual

machines (VMs) in the MapReduce environment. In this

paper, we propose a VM placement approach to reduce

data transmission latency by focusing on the

communication cost among VMs. In this approach, we

first propose two VM placement optimization algorithms

to minimize the total data transmission latency and the

maximum data transmission latency in the MapReduce

environment. Then, we use the algorithms to place VMs

for Map and Reduce phase. Finally, we analyze the time

complexity for our approach. We implement our approach

by simulation. The simulation results show that our

approach reduces the average data transmission latency by

26.3% compared with other approaches.

Keywords: virtual machine placement; data transmission

latency; MapReduce; data node

1 Introduction
MapReduce is a programming model and an associated

implementation for processing and generating large data

sets with a parallel, distributed algorithm on a cluster [1]. It

is based on the common use of Map and Reduce operations

in functional programming. The model undertakes

efficient parallel computing through a large number of

data nodes and computation nodes for data intensive Cloud

application. The total completion time is an important

performance metric for Cloud application. There are many

influencing factors for the completion time, such as

communication bottlenecks, the load of servers, etc.

However, the main impact factor is the transmission

latency between data nodes and computation nodes. As the

time cost of each (MapReduce) task can affect the

economic benefits of cloud service providers, it is

important and needs to be optimized. Meanwhile, the time

cost is mainly determined by the data transmission latency

between data nodes and VMs. Hence, reducing the data

transmission latency is a primary problem for Cloud

service providers [2, 3].

The data transmission latency of a given task is the

time that data need for transmission from the relevant data

nodes to computation nodes. The placement of the VMs

exerts a tremendous influence on data transmission latency.

A bad placement may lead to quite large transmission

latency. The basic VMs placement schedule has two

aspects. One is placing the VMs to the data nodes in which

the data is stored, and the other is moving the data to

computation nodes in which the VMs are located.

However, neither of them is always feasible. As it is

difficult to store data locally in most cases, we often

encounter large data transmission latency. Some notable

schemes have been proposed to minimize the latency by

appropriate VMs placement ([4], [5], [6], [7]). These

approaches generally choose some VM cliques, and then

assign the chosen cliques to data nodes. Nevertheless,

there are mainly four shortcomings in those approaches.

1) The previous approaches minimized transmission

latency under the case that communication exists among

each VMs. However, the latency among VMs only exists

between the Map VMs and the Reduce VMs, that is to say,

any two VMs in the same layer(Map or Reduce) do not

need to communicate with each other for data exchanging

(MapReduce contains Map layer and Reduce layer). Only

the VM in the Map layer can accept data from the data

node. VMs in the Reduce layer cannot receive data directly

from the data node, but can accept data from Map layer

VMs. Thus VMs which belong to the same layer do not

have communication with each other at all. Data

exchanging only occurs between VMs belonging to

different layers. So, we just need to consider the latency

between VMs which belong to different layers when we

optimize the data transmission latency.

2) Existing VM placement approaches often choose

the intensive VMs which are far from data nodes rather

than the sparse VMs which are around data nodes. When

the distribution of VMs is homogeneous, these existing

approaches are effective. However, VMs distribution is

often heterogeneous in practical applications. Because the

previous approaches give priority to transmission latency

among VMs (Map or Reduce) rather than latency between

data nodes and Map VMs, these approaches will choose

the more intensive VMs as Map VMs instead of the sparse

VMs. When plenty of intensive VMs are far from data

nodes and a small number of sparse VMs are near to data

nodes, choosing the further and intensive VMs may

significantly increase the data transmission latency. This

will become more serious in the case that the latency

between data nodes and VMs is much bigger than the

latency among VMs.

3) The time complexity (we analysis time complexity

in the Appendix A) of existing VM placement approaches

is very high. If the number of available VMs is n, then the

approaches will create n cliques (each VM is the center of

its clique). To find the total shortest data transmission

latency between data nodes and VMs, the placement

algorithm must be repeated n times. When n is very large,

the time complexity of previous approaches becomes

extremely high.

A

B

Clique

Figure.1 Both VM A and B satisfy the constraint of clique selection.

However, only one of them will be added into the clique, since

the latency between them exceeds the threshold.

4) The previous approaches are not totally correct and

appropriate. When the radius of the clique is small, the

approaches get many repeated cliques and the VMs in

clique may be not sufficient for data nodes, which mean a

low efficient work. When the radius of the cliques is too

large that contains massive VMs, it means that the radius is

out of action. In addition, it can encounter an unequal case.

As shown in Figure 1, the small circles represent

computation nodes (VMs), and the small circles in big

round wire represent the VMs which have been added to

clique. Now we judge if A and B should be added to clique.

We assume that the latency between A and any VM in

circle is below the clique selection threshold, and it is the

same to B. It looks like both A and B should be added to

clique. However, the latency between A and B is beyond

the threshold, which means A and B cannot be added to the

clique together and only one of them can be added to the

clique. If choose A to be added, it is not fair for B, and vice

versa. The previous approaches cannot judge which one

should be added to clique.

To overcome these shortcomings, we propose a novel

VM placement optimization approach to minimize the data

transmission latency. We first propose two VM placement

optimization algorithms to minimize the total data

transmission latency and the maximum data transmission

latency. The first optimization is modeled as a linear sum

assignment problem (LSAP), and the second is formulated

as a linear bottleneck assignment problem (LBAP). Then

we use the algorithms to place VMs for Map and Reduce

phase. The Reduce phase is based on the Map phase and

the inter-VM latency. At last, we analyze the time

complexity of our approach and the previous approaches.

Compared to previous work, we decrease the data

transmission latency between data node and its assigned

Map VM enormously, and place VMs for Reduce phase in

a fine grain level in heterogeneous environment. We also

decrease the time complexity of VM placement approach.

We evaluate our approach by massive simulation, and

compare our approach with previous approaches in terms

of the total data transmission latency, maximum data

transmission latency, and time complexity. The

experimental results show that our approach is superior to

previous approaches.

The rest of this paper is organized as follows. First, in

Section 2, we discuss some related work. We then present

our novel VM placement optimization approach in Section

3. Section 4 describes the simulation results and studies the

impact of various parameters. Finally, we conclude the

paper in Section 5.

2 Related Work
Many researchers have proposed approaches that aim

to minimize data transmission latency. Because of space

constraints, we only review some notable approaches.

1) Minimization of time cost. The Cloud workflow is

minimized in [8, 9], Pandey et al. [9] proposed an online

linear programming model to minimize the data retrieval

and time cost of data-intensive workflows in clouds. The

model retrieves data from the storage of the cloud. The

time cost of communication is proportional to the data

volume. Based on the storage and computing resources of

the cloud, the application is modeled as a workflow.

Compared with Amazon CloudFront’s “nearest” single

data source selection, this model reduces the time cost of

multiple executions by 75%. Feng et al. [10] presented an

online optimization problem that minimizes the

operational time cost using a store-and-forward procedure

at intermediate nodes on the inter-datacenter traffic. By

restricting data transmission to a time-slotted model, the

problem was formulated on a time-expanded graph and

solved by convex optimization solvers. As we all know,

minimizing the time cost equals to maximizing the

economic profits. A dynamic virtual resource renting

approach has been introduced that adopts outlier detection

to filter extreme prices [11, 12]. This method utilizes a

weak equilibrium operator for the virtual resources, and a

novel rental decision-making algorithm to select the most

profitable resource.

2) Minimization of data latency in Hadoop [13, 14].

MapReduce processes many tasks in parallel. Thus, the

completion time of a job is determined by the last finished

task. Hadoop is an open-source implementation of

MapReduce whose scheduler suffers from performance

degradation in heterogeneous environments [15]. Zaharia

et al. [16] designed a new scheduling algorithm to

minimize the data transmission latency, and this improves

Hadoop’s response time enormously. Lin et al. [17]

showed that a distributed cache can be adapted to Hadoop,

and provide a feasible, scalable, and general-purpose

solution. A system called Mantri has been developed that

uses a cause-and-resource-aware technique to monitor

tasks and cull outliers [18]. This system considers a

judicious arrangement with network bottlenecks, and uses

a greedy algorithm to arrange Hadoop tasks and minimize

data latency. Mantri decreases job completion times to

32%.

3) Minimization of data transmission by VM

placement[19, 20]. Isard et al. [21] introduced a new,

graph-based VM placement for the real-time distributed

scheduling of jobs with fine-grained resources. As fairness

and locality generally conflict, this scheme delays a VM’s

execution until the resource is available, which increases

the probability of data local access? The proposed VM

placement is assumed to operate on a fine-grained

timescale, with fairness and locality reflected by the edge

weights in the graph model. The method is then

transformed into a min-cost flow problem. Zaharia et al.

[22] presented a simple VM placement algorithm called

delay scheduling to solve the conflict between fairness and

locality. When fairness prevents a local VM task from

being launched, other VM tasks are launched instead.

Greenberg et al. [23] shows that it is important to retain a

balance between fairness and locality. Kuo et al. [24] first

propose a 3-approximation algorithm for minimizing the

maximum data transmission latency. Subsequently, they

close the gap by proposing a 2-approximation algorithm,

which is an optimal approximation algorithm for resolving

the problem in the price of higher time complexity.

However, their optimization objective isn't totally same

with ours. Alicherry and Lakshman [4] introduced an

optimization approach based on VM placement. They

considered the VM placement with and without inter-VM

constraint. The established model assumes that the

relationship among VMs satisfies the triangle inequality.

This means that communication occurs between any two

VMs. However, this is not suitable for MapReduce

because latency only exists between VMs in different

layers. The VM of Map can communicate with VM of

Reduce, but it is impossible when the VMs come from the

same layer. The Hungarian algorithm [25] is used to solve

the assignment problem. When intensive distribution of

VMs is far from the data nodes and sparse distribution of

VMs is closer, this approach always chooses the

intensively distributed VMs instead of the sparsely

distributed VMs, which increases the data transmission

latency significantly. When the inter-VM constraint is

added to the problem, it becomes NP-hard. This case can

be solved heuristically, but the characteristics of the

heuristic algorithm mean there is a considerable amount of

redundant time.

To the best of our knowledge, no previous method has

considered the real relationship among the VMs in

MapReduce. The latency only exists between VMs in Map

layer and Reduce layer. Moreover, previous VM

placement techniques often neglect sparse VMs that are

close to the data nodes, and have very high time

complexities. Hence, the data transmission latency has not

been efficiently optimized.

3 Proposed Approach
In this section, we introduce an effective approach for

the placement of VMs. First, we propose two optimization

algorithms to minimize the total data transmission latency

and the maximum data transmission latency. Then, we

propose an approach to place VMs for Map and Reduce

layer. We analyze the time complexity of our approach and

the previous approach in the appendix. The notation used

in this section is defined in Table 1.

Table 1 NOTATIONS

Symbol Meaning

CM Placed Map VMs

CR Placed Reduce VMs

m

Cardinality of the data nodes and VMs of
Map

n Cardinality of computation nodes

k Cardinality of Reduce

Di Data nodes

V V is the left vertex set of G = (V∪W; E); it
represents data nodes

W W is the right vertex set of G = (V∪W; E);

it represents computation nodes

E E is the edge set between the two vertex

sets

w(i, j) Data transmission latency between Vi and

Wj in G = (V∪W; E)

C

Set of all computation nodes

CpM

Set of pre-Map VMs

t1

Threshold for pre-Map VMs selection

t2 Threshold for Reduce VMs selection

t3 Maximum data transmission latency
threshold

t4 Total data transmission latency threshold

ija

Parameter with a value of 1 when Vi is

assigned to Wj; 0 otherwise

G G = (V∪W; E), where V is the left vertex
set, W is the right vertex set, and E is the

edge set between the two vertex sets

G’ G’ = (V’∪ W’; E’) is a subgraph of G with

V’ V, W’W, E’ E

GM Maximal perfect matching of G

G’M

G’M= (V’M∪ W’M ; E’M) is a matching of
G’

wmin Minimum of w(i, j)

wmax Maximum of w(i, j)

wmid The minimal maximum data transmission

latency

wmid1,2 The middle variable between wmin and
wmax

lV[i] Label for Vi

lW[j] Label for Wj

O O=1 (if the objective is Object 1)

O=2 (if the objective is Object 2)

We consider the data transmission latency under a

distributed cloud environment. There are two resources in

the datacenter: data nodes and computation nodes(VMs).

Information is stored in the data nodes by cloud users.

When the data is needed for computation, we should

assign appropriate VMs for each data node. In our scenario,

the distribution of data node is fixed. The only thing that

we should consider is how to place the VMs for Map and

Reduce layer, respectively. We assume that one VM can

access data from one data node and only Map layer VMs

can accept data from the data nodes. VMs of the Reduce

layer cannot receive data from the data nodes directly, but

they can accept data from VMs in the Map layer. A VM

cannot communicate with another VM in the same layer.

Therefore, inter-VM latency only exists between the Map

and Reduce VMs. In Section 3.1, we propose an algorithm

which is used to minimize the total data transmission

latency under data transmission latency threshold. Section

3.2 introduces another algorithm which minimizes

maximum data transmission latency under total data

transmission latency threshold. In Section 3.3, we describe

an approach of VMs placement for Map and Reduce layer.

3.1 Minimize the total data transmission latency

The total data transmission latency has a deep influence on

the total bandwidth cost. Cloud service provider and user

both hope the bandwidth cost as low as possible.

Minimizing the total data latency can effectively reduce

the bandwidth cost. However, as a result of conflict

between local optimization and global optimization,

minimizing the total data transmission may increase the

maximum data transmission latency of links. If this case

occurs, job completion time will be delayed, and all the

other tasks will be waiting for the slowest task. Hence, we

must set a threshold for maximum data transmission

latency of links to get a tradeoff. Links whose data

transmission latency is above the threshold will be

removed before the total data transmission latency

optimization. As a result, we have two constraints: the

maximum data transmission latency constraint and

minimizing the total data transmission latency constraint.

Considering our focus is the data transmission latency

among the nodes, we construct a bipartite graph G = (V∪
W; E) to model the distribution and relationship of data

nodes and computation nodes. In the bipartite graph G = (V

∪W; E), V is the left vertex set, it represents data nodes. W

is the right vertex set, it represents computation nodes, and

E is the edge set between the two vertex sets. w(i, j) is the

weight between Vi and Wj, whose value equals to the data

transmission latency between them. We assume the

number of data nodes is m ,and the number of computation

nodes is n. Commonly, we have m<n. To simplify the

problem, we increase the cardinality of data nodes to n,

which makes the cardinalities of data nodes and

computation nodes are same to each other. The dummy

nodes have the weight (latency) of ∞ with other nodes.

In the mathematical discipline of graph theory, a

matching or independent edge set in a graph G = (V∪W; E)

is a set of edges without common vertices. It may also be

an entire graph consisting of edges without common

vertices. Specially, if each Vi has a corresponding Wj and

vice verse, we call the matching as a perfect matching [26,

27]. Our aim is to get the perfect matching of V and W

under the two constraints stated above.

Hungarian algorithm is a famous algorithm for

bipartite graph matching. However, it can only get a

maximum matching for the bipartite graph. Our aim is to

find the matching which has the minimum sum of the data

transmission latency. Thus, we propose an improved

algorithm to match the bipartite graph G and get the

minimum total data transmission latency. For this, we

construct a Linear Sum Assignment Problem (LSAP) [28,

29] to describe it. w(i, j) is the latency (weight, edge) of Vi

and Wj, aij only have two value. If Wj is assigned to Vi, aij

has the value of 1. Otherwise, its value is 0. Formula (1) is

minimizing the total data transmission latency. Equation (2)

shows that each Wj is assigned to a single Vi, and Equation

(3) shows that each Vi only accept one Wj for matching.

Equation (4) indicates that the value of aij is either 1 or 0.

1 1 (,)n n

i j ijMinimize w i j a   



subject to:

1 1 1,...,n

i ija for all j n   

1 1 1,...,n

j ija for all i n   (3)

{0,1} , 1,...,ija for all i j n  (4)

Actually, Formula (1) is a minimal weight matching

problem (“minimal weight” represents the minimal sum of

the weights). Since each weight is positive number, the

minimum sum of the weights equals to the maximum sum

of the weights' negative values. Then, the problem is

transformed to a maximal weight matching problem. For

convenience, we mark each Vi and Wj with labels (lV[i] and

lW[j]), and any w(i, j) satisfies lV[i]+ lW[j]≥w(i, j) at any

time in our proposed algorithm. By labeling Vi and Wj as

lV[i] and lW[j], we can transform the maximal weight

matching problem to maximal perfect matching problem.

We use the proposed algorithm in this section to get the

maximal perfect matching, which is the minimum total

data transmission latency of bipartite graph. The algorithm

is supported by the following theorem:

Theorem: In the bipartite graph, if the sub-graph

whose weights satisfy lV[i]+ lW[j]=w(i, j) (the sub-graph is

called equal sub-graph) and have a perfect matching.

Then, the perfect matching is the maximal weight matching

of the bipartite graph.

Proof: For G=(V ∪ W; E),G'=(V' ∪ W'; E') is a

sub-graph of G. G'M=(V'M∪W'M; E'M) is a matching of G'.

If G'M is belong to a equal sub-graph, it satisfies the

equation:∑w(i, j)=∑(lV[i]+ lW[j]). However, if G'M have

weight which is not belong to equal sub-graph, it satisfies

the equation:∑w(i, j)<∑(lV[i]+ lW[j]).Thus, the perfect

matching of equal graph must be the maximal weight

matching of the bipartite graph.

We use the following steps to solve the transformed

problem of Formula (1).

Step1: Firstly, to reduce the value of maximum data

transmission latency, we reconstruct the bipartite graph G

= (V∪W; E) to satisfy the threshold constraint. In the

algorithm, we use t to denote the maximum data

transmission latency threshold. If w(i, j)> t, we pruning it

out of the bipartite graph G. After this step, we get a new

bipartite graph with all weights satisfying the maximum

data transmission latency threshold. (Line 1-5)

Step2: We use the negative value of each weight, by

which we transform the minimal weight matching to

maximal weight matching. (Line 6)

Step3: We initialize the label value of Vi and Wj. Since

the problem has been changed to maximal weight

matching problem, we initialize lV[i] with the maximum

weight of Vi and Wj (j=1....n). We initialize lW[j] with 0. By

doing this, we can make sure lV[i]+ lW[j]≥w(i, j). (Line

7-10)

Step4: We use Hungarian Algorithm to equal

sub-graph of G to find the maximum matching. We get a

maximum matching GM. (Line 11-12)

Step5: If GM is a perfect matching, the proposed

algorithm is finished and GM is the minimum weight

matching. (Line 13-14)

Step6: On the contrary, if GM isn't a perfect matching,

we will revise the label lV[i] and lW[j] to enlarge the equal

sub-graph. After the revising, it goes to Step4. We repeat

Step4 - Step6 until we get the perfect matching. (Line

15-26)

Algorithm 1:Minimizing total latency with maximum

latency threshold

Input: G=(V∪W; E) bipartite graph; maximum data

transmission latency t; w(i, j) is the weight between Vi

and Wj; lV[i] is the label of V, lW[j] is the label of W.

Output: bipartite matching GM with minimum total

latency

Note: An alternating path is a path in which the edges

belong alternatively to the matching and not to the

matching.

1. for all w(i, j) do

2. if w(i, j)>t

3. Pruning w(i, j) out of E

4. end if

5. end for

6. w(i, j)=-w(i, j) // we use negative value of each weight

7. for all lV[i], lW[j] do

8. lV[i]=Max(w(i, j))

9. lW[j]=0

10. end for

11. for G=(lV∪lW; E) do

12. use Hungarian Algorithm to match G GM

13. if (GM is a perfect matching where lV[i]+ lW[j]=

w(i, j))

14. break

15. else

16. for all (lV[i]  alternating tree, lW[j] 

alternating tree)

17. d=Min[lV[i]+ lW[j]- w(i, j)]

18. end for

19. for all lV[i] , lW[j] alternating tree

20. lV[i]= lV[i]-d

21. lW[j]= lW[j]+d

22. end for

23. continue

24. end if

25. end for

26. Return GM

Through Algorithm1, we minimize the total data

transmission latency with maximum data transmission

latency threshold, which could maximize the profit of

Cloud Service Provider at the same time.

3.2 Minimize maximum data transmission latency

Tasks are processed totally parallel in MapReduce. Thus,

the total completion time of a job is determined by its

slowest task. The slowest task always has maximum data

transmission latency. Minimizing the maximum data

transmission latency can tremendously decrease the

completion time of job. However, minimizing the

maximum data transmission can't ensure small total data

transmission latency. They are conflict with each other.

For the whole equality, we set a threshold to limit the total

data transmission latency. Our aim is to minimize the

maximum data transmission latency under the total data

transmission latency threshold, which can help us to

achieve a trade-off.

In this section, the bipartite graph is perfectly matched

under the total latency threshold constraint. The problem

can be described as Linear Bottleneck Assignment

Problem (LBAP), which also known as a Bottleneck

Maximum Cardinality Matching [30, 31]. Formula (5) is

minimizing the maximum data transmission latency.

Equation (6) shows that each Wj is assigned to a single Vi,

and Equation (7) shows that each Vi only accept one Wj for

matching. Equation (8) indicates that the value of aij is

either 1 or 0. Equation (9) is the weight matrix.

,

, 1max ()i j n

i j ijMinimize w i, j a

 

(5)

subject to

 1 1 1,...,n

i ija for all j n   (6)

1 1 1,...,n

j ija for all i n   (7)

{0,1} , 1,...,ija for all i j n  (8)

{ (,)}W w i j W is n n fixed coefficient matrix  (9)

To minimize maximum data transmission latency, we

propose the following algorithm to solve this problem. The

specific steps are shown as follows:

Step1: First, we sort the edges according to their

weights w(i, j), and order them as non-decreasing sequence.

(Line 1)

Step2: We initialize the value of wmid1, wmid2, wmin, wmax,

wmid and E for binary search. (Line 2-7)

Step3: In this step, we use binary search to find the

minimal maximum data transmission latency wmid of the

perfect matching GM. We first use Hungarian Algorithm to

get the matching GM. If GM is not a perfect matching, we

revise the value of wmid1 and E. Otherwise, we revise the

value of wmid2. (Line 8-19)

Step4: The GM which we get in step 3 is a perfect

matching. Threshold t is used to reduce the total data

transmission latency of GM. If its total transmission latency

is above the threshold t, it will return an “error”. Or else,

GM is the bipartite matching with minimal maximum data

transmission latency. (Line 20-24)

Algorithm 2:Minimizing maximum latency with total

latency threshold

Input: G=(V∪W; E) bipartite graph; total data

transmission latency t. w(i, j) is the weight between Vi

and Wj;

Output: the minimal maximum latency wmid

1. Sort all the w(i, j) as a non-decreasing sequence

2. wmin=Min(w(i, j))

3. wmax=Max(w(i, j))

4. wmid1=wmin

5. wmid2=wmax

6. wmid=0

7. E=[wmin, (wmid1+ wmid2)/2]

8. while (wmid1 < wmid2)

9. wmid = (wmid1 + wmid2)/2

10. E=[wmin, wmid]

11. use Hungarian Algorithm to match G(V∪W; E) 

GM =(VM∪WM; EM)

12. if (GM is not a perfect matching)

13. wmid1=wmid

14. continue

15. else

16. wmid2=wmid

17. continue

18. end if

19. wend

20. if (the total data transmission latency of GM >t)

21. Return “error” //no bipartite matching satisfies our

constraint.

22. else

23. Return wmid

24. end if

Using Algorithm 2, we can minimize the maximum

data transmission latency, which could enormously

decrease the completion time of job.

3.3 VM placement for Map and Reduce

3.3.1 VM classification

VM classification is extremely important to the overall

optimization. Since our aim is to reduce data transmission

latency between data nodes and VMs of Map layer, we

should choose the VMs with short data transmission

latency to the data node for Map layer firstly. As to the

Reduce VMs, they are just required to be near the Map

VMs since they only have communication with Map layer.

The Reduce VMs placement is determined by the VMs

placement of Map phase. By VM classification, we can get

an accurate selection range of VMs which is called

pre-Map. We get Map VMs from pre-Map through the

algorithms stated above. The threshold t1 which we use to

get pre-Map is determined by cloud users. As shown in the

following procedure, we classify VMs as the pre-Map

layer CpM and the other part C-CpM based on their latency

and threshold t1. Since the relationship between the data

nodes and the Map VMs is one-to-one, we add the

computation node Cj into CpM , when: Cj∈C, weight (or

edge) w(Di, Cj)≤t1. We keep doing this until no VM

satisfies the threshold constraint. As a result, the VMs are

classified to pre-Map and the remaining part.

3.3.2 VM placement

The complete VM placement includes the Map phase and

Reduce phase. In this section, we place VMs of Map and

Reduce for two objectives. The first objective is

minimizing the total data transmission latency in

MapReduce, and the second is minimizing the maximum

data transmission latency in Mapredcue. We use

Algorithm 1 for the first objective and Algorithm 2 for the

second objective. In our assumption, the Reduce phase

starts after the Map phase. Thus, the Reduce VMs will be

placed based on the VM placement of Map. The output of

VM placement for Map is the input of VM placement for

Reduce. In our scenario, the relationship between data

nodes and Map VMs is one-to-one, and the relationship

between Map and Reduce is many-to-many. The number

of Reduce VMs is denoted as k, which is determined by the

users. In the next paragraph, we start to place the VMs of

the Reduce layer.

To determine the VM placement for the Reduce task,

we propose the following method. Since the relationship

between the Map and Reduce layers is many-to-many, we

should make sure each VM of Reduce as near as possible

to VMs of Map. We set a threshold t2 to limit the data

transmission latency between Map and Reduce. We

choose VMs from the remaining set C-CM for the Reduce

layer. If the weights(latency) between a VM of C-CM and

VMs of Map layer are all below t2, we add the VM into CR

(CR denotes the VMs set of Reduce). Finally, we adjust the

value of t2 until the number of VMs in CR reaches k.

3.3.3 Procedure description

The whole steps of VMs placement for Map and Reduce is

as follows:

Step1: We classify the VMs as pre-Map and the

remaining part based on their weight (data transmission

latency) with data nodes. (Line 1-8)

Step2: If the optimization objective is minimizing the

total data transmission latency with maximum data

transmission latency threshold t3, we use Algorithm1 to

place VMs for data nodes (D). We can get the VMs of Map

layer (CM) at the same time. Otherwise, we use Algorithm

2. (Line 9-13)

Step3: We place VMs for Reduce layer after the Map

phase. We adjust t2 until the number of CR equals to k.

(Line 14-34)

Procedure 1 :VM placement for Map and Reduce

Input: G=(D∪C; E); threshold t1, t2, t3 t4;Object O

Output: the placed VMs of Map and Reduce: CM and

CR

Note: We use Algorithm1 for Objective 1, and

Algorithm 2 for Objective 2

1. CpM=0

2. for all Di∈D do

3. for all Cj∈C

4. if w(i, j)≤t1

5. CpM=CpM∪Cj

6 break

7. end if

8. end for

9. end for

10.. if (O==1)

11. use Algorithm 1 to [G=(D∪CpM; E),t3]→GM=（D

∪CM; EM）

12. . else

13. use Algorithm 2 to [G=(D∪CpM; E),t4]→GM=（D

∪CM; EM）

14. end if

15. for decrease t2

16. CR=0

17. for all Cj∈C-CM do

18. F=1

19. for all Ci∈CM do

20. if w(i, j)>t2

21. F=0

22. break

23. end if

24. end for

25. if (F==1)

26. CR=CR∪Cj

27. end if

28. end for

29. if (CR > k)

30. continue

31. else

32. break

33. end if

34. end for

35. Return CM and CR

4 Experiments
In this section, we compare our proposed method with

a conventional approach in terms of total data transmission

latency and maximum data transmission latency.

Moreover, we also study the parameters of our approach.

4.1 Experimental Setup

Our experiments are set up exactly the same way as the

simulation setup of [4]. We set up a datacenter with 1024

racks and divide the racks into 64 blocks. Racks belonging

to the same block can communicate with each other

one switch. The 64 blocks are then divided into 16 groups.

Racks belonging to the same group but not the same blocks

can communicate with each other via three switches. Then,

the 16 groups are divided into four parts. Racks that belong

to the same part but not the same group can communicate

with each other via five switches, whereas racks belonging

to different parts can communicate with each other

through seven switches. We assume the latency between a

data node and VM as follows: To compare with the

previous approach, we set the same experimental

parameter with [4]. We get a random number in the range

[0.75, 1.25], and multiply it by the number of switches

between the data node and VM. In our simulation, the

distribution of VMs is intensive when they are far from

data nodes, and it is sparse when they are closer. We

conducted various experiments for 16, 64, 256, and 1024

racks, and varied the number of data nodes from 10 to 80

multiples of 10. The number of VMs varied from 40 to 120

in steps of 5. Data nodes and VMs were placed into the

racks at random. We compare our approach with a

previous approach that places VMs with the triangle

inequality constraint [4]. We denote the previous approach

as VSTI (VM selection by triangle inequality). Our

approach as VSMR (VM selection by Map and Reduce).

As different number of data nodes has the similar trend, we

show the experiment results of 40 data nodes in this paper.

4.2 VM distribution analysis

In this section, we compare the effect of our approach with

the previous approach. Figure 2 and Figure 3 are

diagrammatic sketches which simulate the distribution of

data nodes and computation nodes. The x-axis and y-axis

represent for an abstract range. The distance between two

nodes is proportional with the transmission latency. In the

figures, the squares represent the data nodes, and the small

dots represent the computation nodes(VMs). The bigger

rounds represent the VMs which are placed for the data

nodes according to the placement algorithms. The two

figures show the result that the total data transmission

latency and maximum data transmission latency of Figure

3 are shorter than Figure 2. Since the VSTI takes more care

on the inter-VM data transmission latency, it ignores the

data transmission latency between data nodes and VMs.

Figure.2 The VM placement result of VSTI. The distribution of VMs is

 intensive when they are far from data nodes and sparse when they are closer.

Figure.3 The VM placement result of VSMR. The distribution of VMs is

intensive when they are far from data nodes and sparse when they are closer.

Figure.4 VSTI vs VSMR in minimizing total data transmission latency for
different number of pre-Map VMs and 40 data nodes.

Figure.5 VSTI vs VSMR in minimizing maximum data transmission

latency for different number of pre-Map VMs and 40 data nodes.

Figure.6 The total data transmission latency for different threshold t1

using VSMR

Figure.7 The maximum data transmission latency for different threshold
t1 using VSMR

Figure.8 The total data transmission latency for different threshold t3

using VSMR

Figure.9 The trend of minimized maximum data transmission latency
for different threshold t4 using VSMR

Hence, the VSTI places the further VMs for data nodes in

Figure 2. However, our approach focuses on the data

transmission latency between data nodes and VMs, and

places the near VMs for the data nodes. Then, the

transmission latency of Figure 3 is shorter.

4.3 Total data transmission latency

Figure 4 shows that VSMR reduces the average total data

transmission latency by 26.3% over VSTI when the

number of pre-Map VMs ranges from 40 to 95. Since

VSTI focuses on the inter-VM relationship, when the

number of pre-Map VMs is small, it is impossible to

choose all the VMs that are near to the data nodes.

However, VSMR takes the relationship between the VM

and data node as selection constraint for the pre-Map VMs.

As a result, VSMR choose more near VMs than VSTI.

When the number of pre-Map VMs ranges from 95 to 120,

the cardinality of the pre-Map equals to the total number of

VMs, and both approaches have the same total data

transmission latency. With the increase of the racks, since

the range of VMs become larger, the total data

transmission latency is higher.

4.4 Maximum data transmission latency

Figure 5 shows that VSMR reduces the maximum data

transmission latency of VSTI by 41.2% when the number

of pre-Map ranges from 40 to 95. Since VSTI is limited by

the inter-VM constraint, many VMs that are sparsely

distributed but near to data nodes are not chosen. Instead,

VSTI chooses the pre-Map VMs that are sparsely

distributed but far from the data nodes, which adversely

affect the maximum data transmission latency. Since

VSMR always choose the near VMs, VSMR is superior

than VSTI. When the number of pre-Map VMs reaches 90,

since the approaches already choose the nearest VMs for

pre-Map, the maximum data transmission latency remains

steady.

4.5 Study on parameters

In this section, we study the effect of parameters including

t1, t3, and t4 (t2 doesn't affect the two objectives.) on total

data transmission latency and maximum data transmission

latency.

4.5.1 Parameter t1

In Figure 6, the total data transmission latency initially

rises and then stabilizes. When t1 is small, the VMs are not

sufficient for data nodes. As the threshold t1 increases, the

bipartite graph can be perfectly matched. Since VSMR

accurately obtains the closer VMs, the total data

transmission latency remains steady, although t1 continues

to increase.

Figure 7 shows that the maximum data transmission

latency increases continuously until t1 is sufficiently large.

As t1 increases, the number of pre-Map VMs also increases.

Then, VMs with high data transmission latency are added

into the pre-Map set. This inevitably increases the

maximum data transmission latency. After t1 exceeds a

certain value, the maximum data transmission latency

remains unchanged.

4.5.2 Parameter t3

Figure 8 illustrates the relationship between the maximum

data transmission latency threshold t3 and the total data

transmission latency. The total data transmission latency

increases along with threshold t3. As t3 increases, the

farther VMs are added into the pre-Map set. As a result, the

total data transmission latency increases. When t3 reaches

a certain value, the total data transmission latency remains

constant.

4.5.3 Parameter t4

Figure 9 shows that the maximum data transmission

latency increases before stabilizing. This is because the

farther VMs are added into the pre-Map VMs, which gives

rise to higher maximum data transmission latency. In the

case of 16 racks, when t4 exceeds 30, the maximum data

transmission latency remains constant. A similar case can

be observed for 64, 256, and 1024 racks.

5 Conclusions
In this paper, we have proposed an approach to optimize

data transmission latency through VM placement. Our

approach first proposes two optimization algorithms to

minimize the total data transmission latency and maximum

data transmission latency. Then, we classify VMs to

pre-Map and other parts based on their latency with the

data nodes. We use the two algorithms to place VMs for

Map phase. Finally, we place VMs for Reduce phase based

on the inter-VM data transmission latency and VMs of

Map phase. Compared to previous approaches, our

approach has three main advantages. Firstly, the

communication among VMs in our model is suitable for

MapReduce. Secondly, the VMs with sparse distribution

around the data nodes are efficiently utilized under

MapReduce. Thirdly, our approach reduces the time

complexity and data transmission latency enormously. The

experimental results show that our approach reduces the

average data transmission latency by 26.3% compared

with other approaches.

However, the approach also can be improved further.

The VM placement of Reduce phase can be more

fine-grained through a new model. After this, the latency

between Map phase and Reduce phase would be shorter.

Acknowledgments

The work presented in this study is supported by NSFC

(61272521) and Research Fund for the Doctoral Program

of Higher Education (20110005130001).

References
[1] J. Dean, and S. Ghemawat, “MapReduce: simplified

data processing on large clusters”, Communications of

the ACM, Vol.51, 2008, pp.107-113.

[2] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce

for data intensive scientific analyses”, In: Proceedings

of 4th IEEE International Conference on e-Science,

2008, pp.277-284.

[3] T. Gunarathne, T.L. Wu, J. Qiu, and G. Fox,

“MapReduce in the Clouds for Science”, In:

Proceedings of 2nd IEEE International Conference on

Cloud Computing Technology and Science

(CloudCom), 2010, pp.565-572.

[4] M. Alicherry, and T.V. Lakshman, “Optimizing data

access latencies in cloud systems by intelligent virtual

machine placement”, In: Proceedings of 32nd IEEE

International Conference on Computer

Communications (INFOCOM), 2013, pp.647-655.

[5] J. Tordsson, R.S. Montero, R.M. Vozmediano, and I.M.

Llorente, “Cloud brokering mechanisms for optimized

placement of virtual machines across multiple

providers”, Future Generation Computer Systems,

Vol.28, 2012, pp.358-367.

[6] J.T. Piao, and J. Yan, “A network-aware virtual

machine placement and migration approach in cloud

computing”, In: Proceedings of 9th International

Conference on Grid and Cooperative Computing

(GCC), 2010, pp.87-92.

[7] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally,

and E. Snible, “Improving performance and

availability of services hosted on iaas clouds with

structural constraint-aware virtual machine

placement”, In: Proceedings of IEEE International

Conference on Services Computing (SCC), 2011,

pp.72-79.

[8] M. Mao, and M. Humphrey, “Auto-scaling to

minimize cost and meet application deadlines in cloud

workflows”, In: Proceedings of 2011 International

Conference for High Performance Computing,

Networking, Storage and Analysis, ACM, 2011.

[9] S. Pandey, A. Barker, K.K. Gupta, and R. Buyya,

“Minimizing execution costs when using globally

distributed cloud services”, In: Proceedings of 24th

IEEE International Conference on Advanced

Information Networking and Applications (AINA),

2010, pp:222-229.

[10] Y. Feng, B. Li, and Bo Li, “Postcard: Minimizing

costs on inter-datacenter traffic with

store-and-forward”, In: Proceedings of the 32nd

International Conference on Distributed Computing

Systems Workshops (ICDCSW), 2012, pp.43-50.

[11] A. Zhou, SG. Wang, QB. Sun, H. Zou, and FC. Yang,

“Dynamic Virtual Resource Renting Approach for

Maximizing the Profits of a Cloud Service Provider in

a Dynamic Pricing Model”, In: Proceedings of 19th

IEEE International Conference on Parallel and

Distributed Systems (ICPADS), 2013, pp.118-125.

[12] Y.J. Hong, J. Xue, and M. Thottethodi, “Dynamic

server provisioning to minimize cost in an IaaS cloud”,

In: Proceedings of the ACM SIGMETRICS joint

international conference on Measurement and

modeling of computer systems, ACM, 2011,

pp.147-148.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,

“The hadoop distributed file system”, In: Proceedings

of 26th International Symposium on Mass Storage

Systems and Technologies (MSST), 2010, pp.1-10.

[14] T. White, Hadoop: the definitive guide: the definitive

guide, O'Reilly Media, Inc. 2009, pp.1-100.

[15] D. Borthakur, “The hadoop distributed file system:

Architecture and design”, Hadoop Project Website,

Vol.11, 2007, pp.21-34.

[16] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, and

I. Stoica, “Improving MapReduce Performance in

Heterogeneous Environments”, In: Proceedings of 8th

USENIX Symposium on Operating Systems Design

and Implementation(OSDI), Vol.8, 2008, pp.29-42.

[17] J. Lin, A. Bahety, S. Konda, and S. Mahindrakar,

“Low-latency, high-throughput access to static global

resources within the Hadoop framework”, University

of Maryland, Tech. Rep. 2009.

[18] G. Ananthanarayanan, S. Kandula, A. Greenberg, I.

Stoica, Y. Lu, B. Saha, and E. Harris, “Reining in the

Outliers in Map-Reduce Clusters using Mantri”, In:

Proceedings of 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Vol.10,

2010, pp.24-37.

[19] L. Simarro, J. Luis, R. M. Vozmediano, R.S. Montero,

and I.M. Llorente, “Dynamic placement of virtual

machines for cost optimization in multi-cloud

environments”, In: Proceedings of IEEE International

Conference on High Performance Computing and

Simulation (HPCS), 2011, pp.1-7.

[20] N.M. Calcavecchia, O. Biran, E. Hadad, and Y.

Moatti, “VM placement strategies for cloud scenarios”,

In: Proceedings of 5th IEEE International Conference

on Cloud Computing (CLOUD), 2012, pp.852-859.

[21] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K.

Talwar, and A. Goldberg, “Quincy: fair scheduling for

distributed computing clusters”, In: Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems

principles(SOSP), 2009, pp.261-276.

[22] M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy,

S. Shenker, and I. Stoica, “Delay scheduling: a simple

technique for achieving locality and fairness in cluster

scheduling”, In: Proceedings of the 5th European

conference on Computer systems(EUROSYS), 2011,

pp.265-278.

[23] A. Greenberg, J. Hamilton, D.A. Maltz, and P. Patel,

“The cost of a cloud: research problems in data center

networks”, ACM SIGCOMM computer

communication review, Vol.39, 2008, pp.68-73.

[24] J.J. Kuo, H.H. Yang, and M.J. Tsai, “Optimal

Approximation Algorithm of Virtual Machine

Placement for Data Latency Minimization in Cloud

Systems”, In: Proceedings of 33rd IEEE International

Conference on Computer Communications

(INFOCOM), 2014.

[25] R. Jonker, and T. Volgenant, “Improving the

Hungarian assignment algorithm”, Operations

Research Letters, Vol.5, 1986, pp.171-175.

[26] D.W. Pentico, “Assignment problems: A golden

anniversary survey”, European Journal of Operational

Research, Vol.176, 2007, pp.774-793.

[27] R. Jonker and A. Volgenant, “A Shortest Augmenting

Path Algorithm for Dense and Sparse Linear

Assignment Problems”, Computing, Springer-Verlag,

Vol.38, 1987, pp.325-340.

[28] R.E. Burkard, and E. Cela, “Linear assignment

problems and extensions”, Handbook of

Combinatorial Optimization, Vol.3, 1999, pp.75-149.

[29] J.E. Hopcroft, and R.M. Karp, “An n^5/2 algorithm

for maximum matchings in bipartite graphs”, In:

Proceedings of 12nd IEEE Symposium on Foundations

of Computer Science(FOCS), 1971, pp.122-125.

[30] H.N. Gabow, and R.E. Tarjan, “Algorithms for two

bottleneck optimization problems”, Journal of

Algorithms, Vol. 9, 1988, pp.411-417.

[31] R.S. Garfinkel, “An Improved Algorithm for the

Bottleneck Assignment Problem”, Institute for

Operations Research and the Management Sciences

(INFORMS), 1971, pp.1747-1751.

