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Abstract—The cloud-assisted mobile edge computing system is a critical architecture to process computation-intensive and
delay-sensitive mobile applications in close proximity to mobile users with high resource efficiency. Due to the heterogenous dynamics
of task arrivals at edge nodes and the distributed nature of the system, the workloads of edge nodes are prone to be unbalanced,
which can cause high task response time and resource cost. This paper solves the dynamic task scheduling problem in cloud-assisted
mobile edge computing (including both peer task scheduling among edge nodes and cross-layer task scheduling from edge nodes to
the cloud), aiming at minimizing average task response time within resource budget limit. To overcome the challenges of task arrival
dynamics, edge node heterogeneity, and computation-communication delay tradeoff, we propose a Water-filling Based Dynamic Task
Scheduling (WiDaS) algorithm. WiDaS dynamically tunes the usage of cloud resources based on the Lyapunov optimization method
and efficiently schedules mobile tasks among edge nodes (and the cloud) by exploiting the idea of water filling. Extensive simulations
are conducted to evaluate WiDaS under a trace-driven traffic pattern and two mathematic traffic patterns. The results demonstrate that
WiDaS shows two-fold benefits of efficiency and effectiveness. In terms of efficiency, WiDaS can achieve the approximate results with
the KKT-based algorithm while reducing the computation complexity from exponential order to polynomial order. In terms of
effectiveness, WiDaS can reduce the average task response time by up to 64.4% and 47.2% over the Fair-ratio and the Edge-first
algorithm.

Index Terms—Mobile edge computing, cloud, task scheduling, workload scheduling
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1 INTRODUCTION

With the proliferation of computation-intensive and delay-
sensitive mobile applications, mobile devices are required to
provide enhanced computation capabilities and long-lasting
battery life. However, the capacities of mobile devices are in-
herently limited due to its physical size. Mobile cloud com-
puting has been proposed to augment the capacities of mo-
bile devices by offloading mobile tasks to the configurable
and sharable resource pool of cloud computing [1], [2]. Nev-
ertheless, offloading mobile tasks to the remote cloud suffers
from wide area network delay and jitters. Moreover, the
demands of mobile applications are increasing much faster
than the growth rate of core network capacity. All these
limitations incent the emergence of mobile edge computing
(MEC). By deploying powerful servers (i.e., edge nodes)
within the wireless access network, mobile devices are able
to access sufficient computation resources via only one-hop
wireless transmission, benefiting from reduced delay and
energy consumption [3], [4], [5]. Additionally, bandwidth-
intensive tasks from mobile devices can be aggregated at
the edge nodes, mitigating the burden of core network.
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In mobile edge computing, while the computation ca-
pacity of each edge node is fixed and limited, mobile task
arrivals fluctuate significantly with time [6]. To accommo-
date the dynamic mobile tasks with high resource efficiency,
we exploit the potential of the cloud-assisted mobile edge
computing system in resource agility [7]. In this system,
cloud resources are used on demand to process the excessive
tasks outsourced from edge nodes. Thus, overloaded tasks
at each edge node can either be outsourced to the cloud
through the core network or migrated to nearby lightloaded
edge nodes via the local area network (LAN) or wired
peer-to-peer (P2P) connections [8]. Due to the heterogenous
dynamics of task arrivals at edge nodes and the distributed
nature of the system, the workloads of edge nodes are prone
to be unbalanced, resulting in high task response time and
resource cost.

According to above analysis, dynamically scheduling
mobile tasks to proper edge nodes (or the cloud), which
thereby balances the system workloads is crucial for im-
proving the system performance at low resource cost. In
this paper, we investigate the dynamic task scheduling issue
based on the ETSI MEC architecture [9]. In this architec-
ture, a MEC application instantiation is triggered once an
instantiation request is raised from a mobile device or from
the Operations Support System. The MEC Orchestration
(MEO) selects the ideal MEC server for the MEC application
instance, and then routes the corresponding mobile traffic
to the selected MEC server. With the above functionality of
MEO, we seek to design a dynamic task scheduling strategy,
which adaptively guides the MEO to make proper decisions
for MEC application instantiation and traffic scheduling.
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Fig. 1. Task scheduling in cloud-assisted mobile edge computing.

Dynamically scheduling mobile tasks in the cloud-
assisted mobile edge computing is a two-fold problem
which needs to (i) adaptively tune the usage of cloud
resources to cater for time-varying mobile tasks, (ii) properly
schedule mobile tasks among edge nodes and the cloud.
Solving this problem optimally faces critical challenges.
First, the computation capacities of edge nodes are fixed
and limited, while mobile task arrivals vary with time
significantly due to the mobility of mobile users and fluc-
tuation of wireless environment. Dynamic task scheduling
is demanded to process the mobile tasks with reduced delay
and resource consumption. Second, edge nodes are hetero-
geneous in terms of computation capacities and mobile task
arrivals. Proper task scheduling requires workload balanc-
ing among the heterogeneous edge nodes and the cloud,
causing exponential computation complexity. Third, prop-
er task scheduling calls for tradeoff between computation
and communication delay. Migrating tasks among nearby
edge nodes or outsourcing excessive tasks to the cloud is
beneficial to reduce the computation delay. Nevertheless,
additional transmission requests are induced on the LAN
or the core network, causing extra communication delay.
Scheduling mobile tasks among the edge nodes and the
cloud should coordinate the computation and the intro-
duced communication delay to optimize the average task
response time.

To address the above challenges, we formulate it as a
dynamic optimization problem and design an efficient task
scheduling algorithm based on the Lyapunov optimization
method and the idea of water filling. To deal with the first
challenge of task arrival dynamics, we use the Lyapunov
optimization method [10] to dynamically tune the usage of
cloud resources and cater for dynamic task arrivals with
high resource agility. To address the second challenge of
exponential complexity caused by edge heterogeneity, we
propose the Water-filling Based Dynamic Task Scheduling
(WiDaS) algorithm, which is proved to have polynomial
complexity.

To address the third challenge of computation-
communication tradeoff, we solve dynamic task scheduling
considering the non-negligible transmission delay on LAN.
A queuing network is used to model the computing pro-
cesses at edge nodes and the cloud and the transmitting pro-
cesses on the LAN and the core network. The computation
and communication delay can be properly traded off when

the average task response time in the queuing network is
minimized.

The contributions of this paper are summarized as fol-
lows.

• This work investigates the dynamic task schedul-
ing issue in cloud-assisted mobile edge computing,
which is the first to include both peer task scheduling
among edge nodes and cross-layer task scheduling
from edge nodes to the cloud.

• We formulate it as a dynamic optimization problem
and propose the WiDaS algorithm to deal with the
challenges of task arrival dynamics, edge node het-
erogeneity and computation-communication delay
tradeoff.

• We conduct extensive simulations to evaluate the
WiDaS algorithm under one trace-driven traffic pat-
tern and two mathematic traffic patterns. The simula-
tion results demonstrate that WiDaS shows two-fold
benefits of efficiency and effectiveness.

The organization of this paper is as follows. We first
review the related work in Sec. 2. In Sec. 3, we first introduce
the overview of the system, and then present the analytical
model and problem formulation. Sec. 4 provides the prob-
lem transformation and performance analysis. Based on the
above result, we present the WiDaS algorithm design in
Sec. 5. Sec. 6 conducts extensive simulations to evaluate the
proposed algorithm, and Sec. 7 concludes the paper.

2 RELATED WORK

To meet the QoS requirements of the delay-sensitive and
resource-intensive mobile applications, researchers have de-
voted extensive efforts to exploiting the potential of mobile
edge computing, such as edge-based augmented reality
applications [11], edge caching [12], [13], edge-based ve-
hicular network [14], etc. Due to the limited computation
capacities of edge nodes and the transmission bandwidth
of wireless access network, a lot of work has investigated
task scheduling in mobile edge computing. Sundar et al [15]
have solved the task scheduling decision problem from the
perspective of applications, with each application consisting
of multiple dependent tasks which should be processed
within a deadline.

There are also extensive works on task scheduling from
the perspective of edge operators to provision improved
system performance with reduced resource consumption.
The existing work on task scheduling in mobile edge com-
puting can be divided into two categories: cross-layer task
scheduling and peer task scheduling.

Cross-Layer Task Scheduling: Researchers have investi-
gated cross-layer (device-to-edge or edge-to-cloud) task
scheduling to enhance local computation capabilities by
solving the computation offloading problem. Distributed
computation offloading schemes have been widely investi-
gated in which computation offloading decisions are made
in a distributed manner to optimize various objectives,
including energy consumption [16], [17], [18], processing
delay [19], [20], [21], bandwidth cost [22] and mobility
management [23], [24]. Centralized computation schedul-
ing mechanisms have also been proposed by researchers.
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Sardellitti et al. [25] have jointly optimized the radio and
computational resources in multicell mobile edge comput-
ing by designing algorithms for both the single-user and
multi-user scenarios. Yang et al. in [26] have investigat-
ed network-aware computation partitioning for multi-user
edge computing. Li et al. in [27] have designed offloading
strategy between edge servers and cloud for deep learning
based IoT applications. Kwak et al. [28] have proposed an
energy-aware dynamic resource and task allocation algo-
rithm to optimize CPU and network energy within delay
constraints. In [29], centralized workload scheduling among
multiple mobile devices and one single edge node has
been investigated. An efficient algorithm has been proposed
to achieve centralized access control of mobile tasks from
mobile devices to the edge node and proper workload
scheduling between the edge node and the cloud. In [30],
Xu et al. have explored the edge-cloud cooperation to jointly
optimize service caching and task offloading. Cloud servers
act as a powerful backup resource provider in the system,
provisioning ample storage and computation capacity for
excessive tasks from each edge node.

Peer Task Scheduling: Researchers have also devoted ex-
tensive efforts to peer task scheduling to explore the po-
tential of peer cooperation in improving resource efficiency.
Chen et al. [8] have exploited cooperation among small base
stations (SBSs) to efficiently handle spatially uneven work-
loads of different SBSs. An online peer offloading algorithm
has been developed by leveraging the Lyapunov optimiza-
tion method to optimize the long-term system performance
without knowledge of future information. Cui et al. [31]
have promoted software defined cooperative offloading in
D2D network and scheduled tasks among mobile devices in
a centralized manner. A greedy algorithm has been designed
to efficiently address the problem with large scale, targeting
at reducing the energy consumption of mobile devices and
the traffic on the access links.

There are only a few works studying both cross-layer
task scheduling and peer task scheduling [32], [33], [34].
Champati et al [32] have solved the task scheduling prob-
lem, which decides task offloading to the cloud and task
scheduling among local processors, without assuming that
task processing times are known a prior. However, the main
focus of the work is static task scheduling, and in the dy-
namic task arrival scenario, the performance bound can only
be ensured for special cases (e.g., when the cloud processing
delay is negligible). In work [33], [34], dynamic scaling
of cloud resources is not considered, which cannot fully
improve resource scalability by exploring the resource elas-
ticity of cloud. Our main focus is dynamic task scheduling
in the cloud assisted mobile edge computing, including both
cross-layer task scheduling and peer task scheduling. Cloud
resource usage is dynamically tuned and task scheduling is
thereby adjusted among edge nodes and from edge nodes
to cloud. An efficient workload scheduling algorithm which
achieves close-to-optimal performance (illustrated in Sec.
6.2) with reduced complexity is provided considering the
non-negligible transmission delay to the cloud and compu-
tation delay in the cloud.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the overview of task
scheduling in mobile edge computing, then we present the
analytical model of the dynamic task scheduling problem.
Finally, we provide the problem formulation.

3.1 Task Scheduling in Cloud-Assisted Mobile Edge
Computing
In mobile edge computing, neighboring edge nodes are con-
nected by LAN or wired P2P connections. Fig. 1 illustrates
the architecture of cloud-assisted mobile edge computing
based on the ETSI MEC architecture in [9]. Operation Sup-
port System receives mobile requests and makes granting
decisions. The granted requests are directed to MEO for
request scheduling. To properly scheduling mobile tasks
among edge nodes, the MEO periodically collects informa-
tion from edge nodes, including mobile task arrival rates
and available edge resources. With the above information,
MEO forms a network-wide view and manages the system
in a centralized manner.

Notice that information exchange overhead is inevitable
for almost all centralized schemes, consuming communi-
cation resources and incurring additional information ex-
change delay. Nevertheless, the transmitted data size during
the information exchange between MEO and edge nodes is
quite small compared to the mobile tasks. Thus, the resource
consumption and information exchange delay can be con-
sidered negligible. Moreover, we seek to design a workload
scheduling algorithm that can be adjusted according to the
practical scenario. For example, when it is not allowed to
schedule tasks among edge nodes across different cities,
each city can be managed by a MEO (which can be operated
on an edge node). The information exchange delay between
the edge nodes and MEO can be as low as 10ms according to
our first measurement study on a leading public edge plat-
form in China [35] (even in the worst case, the information
exchange delay will not exceed 20ms), which is negligible
compared to the task processing delay.

In the cloud-assisted mobile edge computing system,
mobile task arrivals at each edge nodes vary with time
significantly while the resource capacities of edge nodes are
fixed and remain unchanged. To optimize system perfor-
mance with reduced system resource cost, we investigate
dynamic task scheduling for the MEO in cloud-assisted
mobile edge computing. To better characterize system dy-
namics, the task scheduling decision is operated in a slotted
manner. In each time slot, MEO dynamically schedules mo-
bile tasks as follows. 1) MEO updates the cloud information
of the last time slot kept in the cloud profile table, which
records cloud resource utilization, core network bandwidth,
and cloud resource cost. 2) MEO updates history infor-
mation of edge nodes kept in the edge profile tables at
MEO, which record mobile task arrival rates and available
edge resources. 3) Based on the history information of
the edge profile tables, mobile task arrivals of the current
time slot can be predicted. This prediction is for short-term
instantaneous task arrival of the current time slot, and high
prediction accuracy can be achieved with the well-studied
prediction methods, such as FFT [36], Vector Autoregression
[37], and LSTM [38]. As task arrival prediction is not the



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3115262, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XX 2021 4

main focus of this work, we do not devote efforts to task
arrival prediction and provide no results of the prediction.
In Sec. 6, we present different task arrival patterns as the
prediction results of mobile task arrivals. 4) With the above
information, MEO makes the task scheduling decision, in-
cluding i) cloud usage decision, i.e., the optimal number of
the tenanted cloud instances and the optimal service level of
core network, ii) edge workload scheduling decision, i.e., the
optimal workloads scheduled to edge nodes and the cloud.
Through dynamically tuning the usage of cloud resources
and thereby adjusting the task scheduling decisions with the
above steps, MEO seeks to optimize the long-term system
performance within the resource budget limit.

3.2 Analytical Model
This section presents the analytical model of dynamic task
scheduling in the cloud-assisted mobile edge computing
system. We consider N = {1, 2, ...N} edge nodes that are
connected by LAN. The MEC application instantiation and
traffic scheduling of the edge nodes are managed by the
MEO. Let Υn denote the set of neighbouring edge nodes
that have connection with edge node n. Each edge node n
has fixed and limited computation capability δn (in CPU
cycle per second). Cloud resources are utilized on demand
to meet the QoS requirements of dynamic tasks. In public
clouds, users are allowed to scale cloud resource usage by
services such as AWS Auto Scaling [39]. We define a decision
round as a time slot. At the beginning of each time slot, the
controller makes a centralized cloud resource scaling and
workload scheduling decision. As the scaling actions can not
happen too frequently, a time slot is much longer than the
time interval between two successive task arrivals at each
edge node. In this work, we consider a set ofT = {1, 2, ...T}
time slots.

3.2.1 Dynamic Task Arrival
To characterize the dynamics of mobile task arrival at each
edge node, we use the non-homogeneous Poisson process to
model the mobile task arrival [8], [40]. With this model, the
task arrival process at edge node n (n ∈ N) is a Poisson
process in each time slot. Let An(t) denote the average
arrival rate of mobile tasks at edge node n in time slot t and
An(t) varies in different time slots. As different mobile tasks
have various computation (in CPU cycles) and transmission
requests (in bytes), we assume that the required CPU cycles
of mobile tasks follow exponential distribution [8], with ξ
representing the expectation. When transmitting one unit
of mobile tasks (in CPU cycles), c units of input data are
required (in bytes).

3.2.2 Executing at Edge Nodes
As edge nodes have heterogeneous computation capacities
and uneven mobile task arrivals, migrating tasks among
nearby edge nodes is beneficial to exploit the under-utilized
edge nodes and balance edge workloads. According to
mobile task arrivals and the available edge computation
capacities, the edge nodes can be divided into three cat-
egories: overloaded edge nodes, neutral edge nodes, and
light-loaded edge nodes: 1) For a overloaded edge nodes
s, a fraction of tasks are migrated to nearby edge nodes or

TABLE 1
Table of Notations

Notation Description

Υn Set of Neighbouring nodes of edge node n

δn Computation capacity of edge node n

An(t) Average task arrival rate at edge node n in tth slot

ξ Expected CPU cycles of mobile tasks

c Number of input data required by one unit of tasks

rsd(t) Fraction of tasks migrated from edge node s to d

rs0(t) Fraction of tasks outsourced to the cloud from s

λn(t) Expected rate of tasks processed at edge node n

λout(t) Expected rate of outsourced tasks to the cloud

λcloud(t) Expected task arrival rate in the cloud

τn Expected serving time of tasks at edge node n

µn Expected serving rate of edge node n

µcore(t) Expected serving rate of the core network

µc(t) Expected serving rate of the cloud

λ·n(t) Expected inbound rate at n from other edge nodes.

x(t) Service level of AWS Direct Connect

bcore(t) Transmission rate of the core network

A(t) Overall task arrival rates at edge nodes in t

d(t) LAN congestion delay at edge node n

Θ Resource budget limit of the edge operator

ŝ(t) Task scheduling decision in t

Q(t) Virtual queue backlog in t

V Cost-performance tradeoff

L(t) Lyapunov function in t

∆(Q(t)) Lyapunov drift in t

ηj , σi Lagrange multipliers, (j = 1, 2), (i = 1, 2, ..., 2N + 4)

Fig. 2. Queuing network model.

outsourced to the cloud. Denote by rsd(t) the fraction of
tasks migrated from edge node s to edge node d in time
t (rsd(t) ≥ 0). In particular, rss(t) represents the fraction
of tasks executed locally, and rs0(t) represents the frac-
tion of tasks outsourced to the cloud. Thus, rsd(t) satisfies∑
d∈N∪{0}

rsd(t) = 1 and the tasks executed at edge node s

follow a Poisson process with the parameter λs(t) given
as λs(t) = rss(t) · As(t). 2) For a neutral edge node m, it
neither receives tasks from nearby edge nodes (rsm = 0) nor
migrates tasks to other edge nodes (rmd = 0) or the cloud
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(rm0 = 0). Thus, the tasks executed at edge node m follow a
Poisson process with the parameter of Am(t) (i.e. rmm(t) =
1, λm(t) = Am(t)). 3) For a light-loaded edge node d, the
tasks include the tasks originally arriving at this edge node
and those migrated from the overloaded edge nodes. Thus
the tasks executed at edge node d follow a Poisson process
(sum of several Poisson processes) and the parameter λd(t)
is given as λd(t) = Ad(t) +

∑
s∈N\{d}

rsd(t)As(t).

Computation Delay: By summarizing above analysis, the
task arrival at each edge node can be modeled as a Poisson
process in each time slot. In addition, as the required com-
putation of different tasks follows exponential distribution
with the parameter of ξ, the serving time at each edge node
also follows exponential distribution with the expectation

τn =
ξ

δn
. (1)

Therefore, in each time slot t, the serving process at each
edge node can be modeled as an M/M/1 queue and the
computation delay is given as

Dn(t) =
1

µn − λn(t)
, (2)

where µn = 1
τn

.
To ensure the stability of the queue, it should be satisfied
that λn(t) < µn for any time t. Thus, λn(t) is constrained as

0 ≤ λn(t) < µn. (3)

Moreover, as only the neighbouring edge nodes in Υn can
migrate tasks to edge node n, the tasks executed at n
cannot exceed the overall tasks arriving at the neighbouring
edge nodes. Therefore, by combining the queue stability
condition in Eq. (3), λn(t) should satisfy

0 ≤ λn(t) < min{
∑

i∈Υn∪{n}

An(t), µn}. (4)

Migration Delay among Edge Nodes: Migrating mobile
tasks among edge nodes can cause additional transmission
requests on LAN. Let dn(t) denote the migration delay of
inbound tasks to edge node n. We consider that neighbor-
ing edge nodes are connected by high-bandwidth wired
connections, and the migration delay dn(t) (dn(t) ≥ 0) is
irrelevant to the transmitted data size. Denote by λ·n(t)
the expected rate of incoming tasks at edge node n from
other edge nodes. Thus, λ·n(t) can be given as λ·n(t) =∑
s∈N\{n}

rsn(t)λs(t), and it is satisfied that

λ·n(t) = max{λn(t)−An(t), 0}. (5)

3.2.3 Outsourcing to the Cloud
Public clouds provide users with elastic computation re-
sources that are encapsuled as cloud instances and charged
based on usage hourly or even by second [41]. To accommo-
date dynamic mobile tasks with high resource efficiency, the
controller tunes the usage of cloud instances and outsources
the excessive tasks to the cloud at peak hours.

When outsourcing workloads to the cloud, input data
of the tasks needs to be transmitted through the core net-
work. Since wide area network delay and jitters can be

TABLE 2
Pricing of AWS Direct Connect

Service

level
1 2 3 4 5 6 7 8

Bandwidth

(Mbps)
50 100 200 300 400 500 103 104

Pricing rate

(USD/h)
0.03 0.06 0.12 0.18 0.24 0.30 0.30 2.25

induced during the transmission [42], a dedicated connec-
tion should be established between edge nodes and the
cloud to guarantee the system performance. Amazon makes
it possible by providing the service AWS Direct Connect
[43], enabling users to select from different service levels
L = {0, 1, ..., L}. The transmission rate and pricing rate
of AWS Direct Connect are determined by the service level
x(t), denoted as R(x(t)) and P (x(t)) respectively. Note that
x(t) = 0 indicates that no data is transmitted through the
core network, i.e. the transmission rate R(0) = 0, and the
pricing rate P (0) = 0. Table 2 lists the transmission rates
and pricing rates of different service levels.

Denote by λout(t) the average rate of outsourced tasks
to the cloud (λout(t) ≥ 0), which can be computed as

λout(t) =
N∑
n=1

An(t)−
N∑
n=1

λn(t). (6)

Let bcore(t) be the transmission rate of the core network
(bcore(t) = R(x(t))), then the transmission delay in the core
network is

Dcore(t) =
1

µcore(t)− λout(t)
, (7)

where µcore(t) = bcore(t)
cξ . To ensure the stability of data

transmission in the core network, it should be ensured that

0 ≤ λout(t) < µcore(t). (8)

Denote by λcloud(t) (λcloud(t) ≥ 0) the task arrival rate
in the cloud, there is

λcloud(t) = λout(t). (9)

As cloud resources are provisioned as encapsuled instances,
let m(t) represent the number of tenanted cloud instances
in time t.

0 ≤ m(t) ≤ mmax, (10)

where mmax is the maximum cloud instance number that
can be used. In the cloud, the usage of cloud resources is
tuned to accommodate dynamic tasks with high resources
efficiency. With services such as AWS Auto Scaling, cloud
users are allowed to scale cloud resource usage by specify-
ing scaling rules. In this work, the logical controller scales
the cloud resource usage (i.e., the number of tenanted cloud
instances m(t)) according to cloud resource utilization ρ(t):

m(t+ 1) =

 m(t) + i, ρ(t) ≥ Uup

max{m(t)− j, 0}, ρ(t) < Udown

m(t), otherwise.
(11)
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Here, i, j are positive constants, and Uup, Udown represent
the upper and lower bound of the cloud resource utilization.
The cloud resource utilization ρ(t) is represented by the
resource utilization of the queue in the cloud (the definition
is given later). Eq. (11) indicates that the number of tenanted
cloud instances increases by i when the cloud resource
utilization of last time slot grows higher than the upper
bound, and the number decreases by j (if positive) when
the cloud resource utilization drops lower than the lower
bound.

With the above scaling rules, the computing rate of the
cloud can be given as δc(t) = m(t)δins, where δins is the
computing rate of one cloud instance. The serving time of
tasks in the cloud also follows exponential distribution with
the expectation 1

µc(t) . Here, µc(t) is the expected serving rate

of the cloud and can be given as µc(t) = δc(t)
ξ . Similar as Eq.

(2), the serving process at the cloud can be modeled as an
M/M/1 queue, and the average computation delay is

Dcloud(t) =
1

µc(t)− λcloud(t)
, (12)

where λcloud(t) is constrained as

0 ≤ λcloud(t) < µc(t). (13)

We define the resource utilization of the queue in the cloud
as the cloud resource utilization, which is computed as
ρ(t) = λcloud(t)

µc(t) . Note that the actuation delay, i.e., the start-
up time of cloud instances, can be several minutes, which
is unacceptable for delay-sensitive mobile applications [44].
To deal with this problem, AWS Auto Scaling service [39]
provides the predictive scaling policy to detect cloud usage
patterns periodically and perform scaling actions in advance
of predicted changes. Therefore, the performance degrada-
tion caused by actuation delay can be avoided.

3.3 Problem Formulation
3.3.1 System Cost
In the cloud-assisted mobile edge computing framework,
the system cost includes the on-premise cost of edge nodes
and the usage-based cost of cloud resources. Let Cedge

denote the cost of edge nodes, which remains unchanged
through time since fixed computation capacities are pro-
visioned at edge nodes. The outsourcing cost of cloud
resources consists of the cost on cloud instances and the cost
on the core network bandwidth (e.g., AWS Direct Connect).
When tenanting m(t) cloud instances and selecting the
service level x(t), the outsourcing cost on cloud resources
Ccloud(t) is

Ccloud(t) = m(t)pins + P (x(t)). (14)

Here, pins is the price of one cloud instance.
Hence, the system cost is

C(t) = Cedge + Ccloud(t). (15)

3.3.2 System Performance
We take the average task response time as the metrics of
system performance. Let A(t) denote the overall task arrival

rates at all edge nodes in time t, i.e., A(t) =
N∑
n=1

An(t). The

average task response time is a weighted sum of delay at
each part of Fig. 2 and can be computed as

D(t) =
N∑
n=1

(
λn(t)

A(t)
Dn(t) +

λ·n(t)

A(t)
dn(t))︸ ︷︷ ︸

executing at edge nodes

+
λout

A(t)
Dcore(t) +

λcloud

A(t)
Dcloud(t)︸ ︷︷ ︸

outsourcing to the cloud

,

(16)

As shown in the above equation, the average task response
time consists of the weighted delay when executed at edge
nodes and the weighted delay when outsourced to the
cloud. For the tasks executed at edge nodes, the weighted
delay includes the computation delay at edge nodes and the
migration delay among edge nodes. Note that only the mi-
grated tasks from other edge nodes can induce transmission
delay at edge node n. Thus, the weight of the migration
delay is λ·n(t)

A(t) . When outsourcing mobile tasks to the cloud,
the delay is composed of the computation delay in the cloud
and the transmission delay in the core network.

In the cloud-assisted mobile edge computing system, to
optimize the average task response time within the budget
limit, the dynamic task scheduling problem is formulated as

P1: min lim
T→∞

1

T

T−1∑
t=0

D(t)

s.t.

C1: lim
T→∞

1

T

T−1∑
t=0

C(t) ≤ Θ

Constranits (4) (6) (8) (9) (13).

(17)

In problem P1, the objective is to optimize the long-
term average task response time. Constraint C1 ensures
the long-term average system cost does not exceed the
resource budget limit Θ. We seek to determine the opti-
mal cloud resource usage (i.e., the number of cloud in-
stances, m(t), and the service level of the core network,
x(t)) and the optimal task scheduling decision ŝ(t) (ŝ(t) =
〈λ1(t), ..., λN (t), λout(t), λcloud(t)〉) by solving problem P1.

4 PROBLEM TRANSFORMATION AND PERFOR-
MANCE ANALYSIS

In this section, we first present problem transformation
based on the Lyapunov optimization method. Then we
analyze the performance of this transformation, providing
theoretical basis for algorithm design in the next section.

As the usage of cloud resources is tuned dynamically,
the system cost in different time slots can exceed or remain
under the budget limit. To characterize the relative states
of system cost and budget limit, we introduce the virtual
queue Q(t) given as

Q(t) =

{
max{Q(t− 1) + C(t− 1)−Θ, 0}, t ≥ 1

0, t = 0.
(18)

Eq. (18) indicates that Q(t) accumulates the excessive sys-
tem cost over the budget limit. With Q(t), we have the fol-
lowing conclusion: Constraint C1 can be ensured by enforcing
the stability of Q(t).
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Proof. According to the definition of Q(t), the deviation of
Q(t) satisfies

Q(t+ 1)−Q(t) ≥ C(t)−Θ. (19)

Sum up the deviation through time slots t ∈ T, divide T
and take a limit over T , there is

lim
T→∞

Q(T )−Q(0)

T
≥ lim
T→∞

1

T

T−1∑
t=0

C(t)−Θ. (20)

By enforcing the stability of Q(t), i.e.,

lim
T→∞

Q(T )

T
= 0, (21)

we have

lim
T→∞

1

T

T−1∑
t=0

C(t)−Θ < 0. (22)

Thus the constraint C1 is ensured.

According to the above conclusion, it follows that if we
can design a dynamic task scheduling algorithm that min-
imizes the long-term average task response time subject to
the stability of virtual queue Q(t), the original problem P1 is
equivalently solved. As the Lypunov optimization method
is dedicated to optimizing objectives while maintaining
queue stability, this conclusion leads to solving problem P1
with the Lyapunov optimization method.

4.1 Problem Transformation

To solve P1 with the Lyapunov optimization method, we
first introduce the Lyapunov function and Lyapunov drift.
Define the Lyapunov function as

L(t) =
1

2
Q2(t), (23)

and the Lyaponov drift as

∆(Q(t)) = E{L(Q(t+ 1))− L(Q(t))|Q(t)}. (24)

It can be inferred from [10] that the smaller is ∆(Q(t))
(for each t ∈ T), the more likely Q(t) is stabilized. In
problem P1, apart from the virtual queue Q(t) we want to
stabilize, there is an associated ”penalty” process D(t), the
long-term average of which we want to minimize. Hence,
to solve P1, we exploit the conclusion of the Lyapunov
optimization method and turn to minimize the drift-plus-
penalty ∆(Q(t)) + VE{D(t)|Q(t)} in each t ∈ T. Here
V (V ≥ 0) implies the cost-performance tradeoff, i.e., how
much the algorithm design emphasizes the system perfor-
mance compared with the system cost.

From the definition of ∆(Q(t)), we can derive that the
drift-plus-penalty is upper bounded as

∆(Q(t)) + VE{D(t)|Q(t)} ≤
B +Q(t)E{(C(t)−Θ)|Q(t)}+ VE{D(t)|Q(t)}, (25)

where B is a constant and satisfies

B ≥ 1

2
E{(C(t)−Θ)2|Q(t)}. (26)

for all time t. According to the Lyapunov drift-plus-penalty
framework in [10], we just need to optimize the bound in

the right side of (25) in each time slot t, then the problem P1
is transformed into

P2: min Q(t)(C(t)−Θ) + V D(t)

s.t. Constraints (4) (6) (9) (8) (13).
(27)

Till now, we have transformed the original dynamic opti-
mization problem P1 to a static optimization problem P2 in
each time slot. In the following part, we will analyze the
performance of this problem transformation.

4.2 Performance Analysis

We present theoretical analysis of the problem transforma-
tion, demonstrating that solving P2 optimally in each time
slot can lead to near-optimal solution of problem P1. The
results are concluded in Theorem 1.

Theorem 1. Denote by ŝ∗(t) the optimal workload scheduling
decision obtained by solving problem P2 in each time slot. The
long-term average virtual queue backlog Q(s∗(t)) and the service
response time D(s∗(t)) satisfy

lim
T→∞

1
T

T−1∑
t=0

E{D(s∗(t))} ≤ B
V + d∗

lim
T→∞

1
T

T−1∑
t=0

E{C(s∗(t))−Θ} ≤ 1
ε (B + V (dmax − d∗)),

(28)
where d∗ is the optimal long-term average service response time
to problem P1, dmax is the upper bound of the service response
time, and ε is the system cost surplus which can be achieved by a
stationary workload scheduling strategy.

Proof. From Theorem 4.5 in [10] , for any χ > 0, there exists
a stationary workload scheduling policy ŝΠ(t) for problem
P2, which is independent of the virtual queue satisfying

E{D(sΠ(t))} ≤ d∗ + χ,
E{C(sΠ(t))} ≤ χ (29)

By applying Eq. (29) into the drift-plus-penalty inequation
(25), there is

∆(Q(t)) + V E{D(s∗(t))|Q(t)}
≤ B +Q(t)E{(C(s∗(t))−Θ)|Q(t)}+ V E{D(s∗(t))|Q(t)}
≤ B +Q(t)E{(C(sΠ(t))−Θ)|Q(t)}+ V E{D(sΠ(t))|Q(t)}
≤ B + χQ(t) + V (d∗ + χ)

(30)
Let χ→ 0, sum up both sizes of (30) over t ∈ {0, 1, ..., T−1}
and divide by T , we obtain

1

T
E{L(Q(T ))−L(Q(0))}+V

T

T−1∑
t=0

E{D(s∗(t))} ≤ B + V d∗.

(31)
Let T →∞, (31) is rearranged as

lim
T→∞

1

T

T−1∑
t=0

E{D(s∗(t))} ≤ B

V
+ d∗. (32)

To prove (28), we assume that there are ε > 0 and a
workload scheduling policy sw(t) satisfying

E{C(sW (t))−Θ} ≤ −ε. (33)
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Apply (33) to (25), there is

∆(Q(t)) + V E{D(s∗(t))|Q(t)}
≤ B +Q(t)E{(C(sW (t))−Θ)|Q(t)}+ V E{D(sW (t))|Q(t)}
≤ B − εQ(t) + V E{D(sW (t))}.

(34)
Sum up both sizes of (34) over t ∈ {0, 1, 2, ..., T − 1} and
divide by T , we have

1
T E{L(Q(T ))− L(Q(0))}+ V

T

T−1∑
t=0

E{D(s∗(t))}

≤ B − ε
T

T−1∑
t=0

Q(t) + V E{D(sW (t))}
(35)

Let T →∞, and (35) can be rearranged as

lim
T→∞

1
T

T−1∑
t=0

E{Q(t)} ≤

1
ε (B + lim

T→∞
V
T

T−1∑
t=0

E{D(sW (t))})

− 1
ε lim
T→∞

V
T

T−1∑
t=0

E{D(s∗(t))}

≤ 1
ε (B + V (dmax − d∗))

(36)

According to the definition of Q(t), there is

lim
T→∞

1

T

T−1∑
t=0

E{C(s∗(t))−Θ} ≤ 1
(B + V (dmax − d∗)).

(37)
By summarizing the above analysis, Theorem 1 can be
proved.

Insight: Theorem 1 indicates that solving problem P2
optimally can lead to the near-optimal solution of the o-
riginal problem by randomly changing the weight constant
V . In each time slot t, observe the current state of Q(t)
and solve the static optimization problem P2, then the long-
term average task response time D(t) will be either smaller
than the target value d∗ or differs from d∗ by less than
B
V . However, the long-term average virtual queue backlog
increases linearly with V , as illustrated in Eq. (28). As the
virtual queue accumulates the excessive part of the system
cost over the budget limit, Theorem 1 also demonstrates the
[O(V ), O( 1

V )] tradeoff between the average task response
time and the system cost.

5 THE WIDAS ALGORITHM DESIGN

Sec. 4 has transformed the original dynamic optimization
problem P1 into a static optimization problem P2 in each
time slot. In this section, we first analyze the computation
complexity of problem P2 by exploiting the convex property.
Then, we present the algorithm design of WiDaS.

5.1 Complexity Analysis
When given the cloud computation capacity (i.e., the num-
ber of cloud instances m(t)) and the core network band-
width (i.e., the service level of AWS Direct Connect x(t)),
problem P2 has the the following property.

Theorem 2. When given m(t) and x(t), problem P2 is a convex
optimization problem over the task scheduling decision ŝ(t).

Proof. According to the definition of a convex optimization
problem, if we want to prove the covexity of problem P2,
we need to prove that the objective function Q(t)(C(t) −
Θ) + V D(t) is convex over ŝ(t). In each time slot t, the
virtual queue Q(t) is updated according to (18) and C(t) is
determined by m(t) and x(t). Thus, it is needed to prove
that D(t) is convex over ŝ(t). According to (16),

D(t) =
1

A(t)
[
N∑
n=1

λn(t)

µn − λn(t)
+ λ·n(t)dn(t)+

λout(t)

µcore(t)− λout(t)
+

λcloud(t)

µc(t)− λcloud(t)
].

(38)

Here, λ·n(t) = max{λn(t)−An(t), 0} is convex over λn(t),
and dn(t) is constant with respect to λn(t), we just need

to prove that D
′
(t) = [

N∑
n=1

λn(t)
µn−λn(t) + λout(t)

µcore(t)−λout(t)
+

λcloud(t)
µc(t)−λcloud(t) ] is convex over λn(t). Denote by H(D

′
(t)) the

Hessian Matrix of D(t),

H(D
′
(t)) = [hmn](N+2)(N+2), (39)

and hmn(t) is given as

hmn(t) =



0, m 6= n

2µn

(µn − λn(t))
3 , m = n, n ∈ {1, 2, ..., N}

2µcore(t)

(µcore(t)− λout(t))
3 , m = n = N + 1

2µc(t)

(µc(t)− λcloud(t))
3 , m = n = N + 2.

(40)
We can conclude that hnn(t) > 0 for each n ∈ {1, 2, ..., N +
2}, and hmn(t) = 0 for any m 6= n, thus H(D

′
(t)) is a

positive semi-definite matrix. Hence, it can be proved that
D
′
(t) is convex over ŝ(t) and thus, D(t) is convex over ŝ(t).
By summarizing above analysis, the objective function of

P2 is a convex function over ŝ(t), the inequation constraints
are convex over ŝ(t), and the equation constraints are affine
functions of ŝ(t). Therefore, problem P2 is a convex opti-
mization problem over ŝ(t) [45].

Based on Theorem 2, we have transformed the original
dynamic optimization problem P1 to the convex optimiza-
tion problem P2 with the Lyapunov optimization method.
Note that we remove the time parameter in this section since
problem P2 is a static convex optimization problem. In a
convex optimization problem, the points satisfying the KKT
conditions are the optimal solutions to this problem [45].
From convex optimization analysis, the KKT conditions of
P2 are given as follows,

∇y(ŝ) +
2N+4∑
i=1

σi∇fi(ŝ) +
2∑
j=1

ηj∇gj(ŝ) = 0

σifi(ŝ) = 0 i = 1, 2, ..., 2N + 4

σi ≥ 0 i = 1, 2, ..., 2N + 4

fi(ŝ) ≤ 0 i = 1, 2, ..., 2N + 4

gj(ŝ) = 0 j = 1, 2.

(41)

Here,
y(ŝ) = Q(C −Θ) + V D(ŝ), (42)
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ηj and σi are Lagrange multipliers, and fi(ŝ) (i =
1, 2, ..., 2N + 4) are standard form of inequation constraints
in (27), which are defined as

fi(ŝ) =



λi − (µi − ε), i = 1, ..., N

−λi−N , i = N + 1, ..., 2N

λout − (µcore − ε), i = 2N + 1

−λout, i = 2N + 2

λcloud − (µc − ε), i = 2N + 3

−λcloud, i = 2N + 4.
(43)

Here, ε is a positive constant.
gj(ŝ) (j = 1, 2) are the standard form of equation constraints
in (41) given as

g1(ŝ) =
N∑
n=1

(An − λn)− λout

g2(ŝ) = λcloud − λout.
(44)

Insight: The KKT conditions (41) indicate that the op-
timal solutions of the convex optimization problem are
searched among the extreme points and boundary points.
For each inequation constraint fi(ŝ) (i = 1, 2, ..., 2N + 4),
there are two possible results: fi(ŝ) = 0, σi ≥ 0 implies that
the optimal solution is on the boundary; fi(ŝ) < 0, σi = 0
indicates that the optimal solution is at the extreme points.
As there are (2N + 4) inequation constraints in problem
P2, directly searching for the points satisfying the KKT
conditions can yield O(22N+4) computation complexity.
Therefore, solving P2 based on the KKT conditions has
an exponential computation complexity over the number
of edge nodes, N . When N is large, a task scheduling
algorithm with reduced computation complexity is needed.

5.2 Efficient Task Scheduling Based on Water Filling
With the increasing density of edge nodes in 5G era, N
grows rapidly. In this section, we seek to design an effi-
cient task scheduling algorithm with reduced computation
complexity.

The complexity analysis in Sec. 5.1 implies that the
exponential computation complexity of P2 arises from the
inequation constraints, each of which limits the searching
range with the upper and lower bounds for each task
scheduling variable in ŝ. By exploiting this property, we
design an efficient task scheduling algorithm as follows.
We first assume that each part of the system, including the
edge nodes, the core network, and the cloud, has unlimited
resource capacity by removing the inequation constraints in
P2. Then we can compute the relative relationship of the
task scheduling variables by solving the modified convex
optimization problem P2 in O(1) computation complexity.
Finally, for the task scheduling variables which have grown
or dropped beyond the bounds, we take the value of the up-
per or lower bounds; for the other variables, we still search
for the results subject to the above relative relationship. This
process is similar to filling water to tubes with different
upper bounds. We first assume that the tubes have no upper
bounds and fill water to these tubes subject to a certain rela-
tive relationship. Once the water level of one tube achieves
the upper bound, we will no longer fill water to this tube,
and the water level remains at the upper bound. Therefore,

our algorithm is called Water-filling Based Dynamic Task
Scheduling (WiDaS) algorithm.

The details of the algorithm are as follows:
Step 1. Remove the inequation constraints of P2, and search
for the extreme points of y(ŝ) within the equation con-
straints by solving the modified P2.

When removing the inequation constraints of P2, the
KKT conditions are transformed as:

∇y(ŝ) +
2∑
j=1

ηj∇gj(ŝ) = 0

g1(ŝ) = 0.

(45)

g2(ŝ) = 0. (46)

Note that y(ŝ) is not partially derivable over λn when λn =
An (caused by λ·n = max{λn − An} in (16)). This can be
solve by dividing λn into two cases, i.e., λn ≥ An and λn <
An. Thus combining (45), the workload scheduling variables
in ŝ can be represented as the functions of η1:

λn(η1) =



µn −

√
V µn

A(η1 − dn)
, η1 ≥ βn + dn

µn −

√
V µn
η1A

, 0 ≤ η1 < βn

A, otherwise

λout(η1) = µcore −
√

V µcore

(η1+η2(η1))A

λcloud(η1) = µc −
√
−V µc

η2(η1)A ,

(47)

where
βn =

V µn

A(µn −An)
2 , (48)

η2(η1) =
V µcore

A[µcore − (A−
N∑
n=1

λn)]

2 − η1. (49)

Step 2. Restrict these workload scheduling variables within
the upper and lower bounds (i.e., inequation constraints of
P2) as follows:

λn =


0, if λn(η1) < 0

µn − ε, if λn(η1) > µn − ε
λn(η1), otherwise.

(50)

λout =


0, if λout(η1) < 0

µcore − ε, if λout(η1) > µcore − ε
λout(η1), otherwise.

(51)

λcloud =


0, if λcloud(η1) < 0

µc − ε, if λcloud(η1) > µc − ε
λcloud(η1), otherwise.

(52)

Substitute (50) into (49) and compute g2(η1) = λcloud−λout

according to (52) and (51), then we can represent g2 as the
function of η1 within the inequation constraints of P2.
Step 3. Search for η1 that enforces g2(ŝ(η1)) = 0. We can
prove that g2(η1) increases with η1. Thus, the η1 satisfying
g2(η1) = 0 can be obtain by the bisection method.
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Proof. Substitute (6) and (47) into (44), then g2(η1) can be
given as

g2(η1) = λcloud(η1)− λout(η1)

= (µc −

√
−V µc
η2(η1)A

)− (A−
N∑
n=1

λn)

= µc −A−

√
−V µc
η2(η1)A

+
N∑
n=1

λn,

(53)

where η2(η1) and λn are presented in (49) and (50). It can
be derived that λn increases with η1, and η2(η1) decreases
with η1. Therefore, g2(η1) increases with η1.

With above steps, we have obtained an efficient algorith-
m of problem P2 (which is also proved to be effective in Sec.
6). Thus we can solve the original problem P1 as follows:
1) In each time slot t, update m(t) according to (11) and
compute Q(t) according to (18). 2) Traverse x(t) ∈ L and
solve problem P2 with the above three steps. We summarize
the details in Algorithm 1.

Algorithm 1 WiDaS Algorithm
1: for each t ∈ {1, 2, ..., T} do
2: Update m(t) according to (11).
3: Update Q(t) according to (18).
4: for each x(t) ∈ {0, 1, ..., L} do
5: µc(t) = m(t)µins.
6: µcore(t) = R(x(t)).
7: C(t) = m(t)pins + P (x(t)).
8: NUM =

⌈
log2(

ηR1 −η
L
1

σ )
⌉
− 1.

9: ηm
1 =

ηL1 +ηR1
2 .

10: for num = 0 : NUM do
11: Compute g2(ŝ(ηL

1 )) and g2(ŝ(ηm
1 )) according to

(51), (52).
12: if g2(ŝ(ηm

1 )) = 0 then
13: break.
14: else if g2(ŝ(η1

1)) · g2(ŝ(ηm
1 )) < 0 then

15: ηR
1 = ηm

1 .
16: else
17: ηL

1 = ηm
1 .

18: end if
19: ηm

1 =
ηL1 +ηR1

2 .
20: end for
21: η1 = ηm

1 .
22: Compute ŝ = 〈λ1, ..., λN , λout, λcloud〉 according to

(50), (51), (52).
23: Compute Q(t)(C(t)−Θ) + V D(t).
24: end for
25: x∗(t) = arg min

x(t)∈{0,1,...l}
{Q(t)(C(t)−Θ) + V D(t)}.

26: ρ(x∗(t)) = λcloud(x∗(t))
µc(t) .

27: end for

The main computation of Algorithm 1 comes from Line
11. For each η1, computing g2(ŝ(η1)) requires traversing λn
(n ∈ N) to restrict within the equation constraints, causing
the complexity of O(N). For each x(t), searching for the
optimal η1 with the bisection method yields O(log(

ηR1 −η
L
1

σ ))
iterations. Therefore, the total computing complexity of

Algorithm 1 is O(TLN log(
ηR1 −η

L
1

σ )), where ηL
1 , ηR

1 are the
left and right bound of the bisection method, and σ is the
searching precision.
Remark: Although the water-filling method has been wide-
ly adopted in the wireless communication area, we are the
first to introduce the water-filling method into workload
scheduling (considering both task transmission and task
processing) in mobile edge computing. Apart from the
lower bound (i.e., 0, which is the same as the above cases in
wireless communications), the workload scheduling results
in mobile edge computing also have upper bounds (related
to the edge resource capacities), which further aggravates
the difficulty of problem analysis and addressing. Existing
water-filling based solutions have demonstrated that the
waterfilling-like optimization problems with a single wa-
ter level can be solved by iterative algorithms and exact
algorithms [46]. In this paper, we first derive the workload
scheduling results into a waterfilling-like form with a single
water level (in Eq. (43) and (44)). As the iterative algorithms
for waterfilling-like optimization problems with a single wa-
ter level can get close to the exact value when the number of
iterations goes to infinity [20], our proposed algorithm can
get to the optimal solution (same as the KKT-based algorithm)
when the searching precision σ go to zero.

5.3 Discussion on Decentralized Implementation
Algorithm 1 is designed under the ETSI MEC architecture,
in which all the edge nodes belong to the same admin-
istrator or operator (e.g., a mobile network operator or a
cloud service provider), thus all of them can be managed
in a centralized manner. However, there are also scenarios
that the edge nodes consist of multiple entities pursuing
their own interests. In these scenarios, not all edge nodes
are willing to share their spare resources cooperatively and
centralized control over the whole system is not feasible.
Decentralized implementation of the proposed algorithm
should be taken into consideration. Coalition games can
be utilized to characterize the behaviours of edge nodes.
Edge nodes are motivated to form small coalitions by proper
incentive mechanisms. With these incentive mechanisms,
all the edge nodes within one coalition can increase their
utility by working cooperatively while edge nodes across
different edge nodes prefer to be segregated. In this case,
our proposed algorithm can be applied to scheduling mobile
tasks among the edge nodes that are within one coalition. It
is not hard to notice that proper incentive mechanisms are
the key to the coalition games. Based on the analysis in [47],
[48], merge-and-split operations can be used to form proper
coalitions and the stability can be enforced.

6 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
WiDaS under different task arrival patterns.

6.1 Simulation Setup and Metrics
We provide a simulator to realize the functionality of MEO
which manages the MEC application instantiation and traf-
fic scheduling over the cloud-assisted mobile edge comput-
ing system . We consider a system with N = 10 edge nodes,
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Fig. 3. Tracelogs of Google compute cells.

which have uniformly distributed computation capacities in
[10,20] Giga CPU cycles/second. The required CPU cycles
of mobile tasks follow exponential distribution with the ex-
pectation of ξ = 1 Giga CPU cycles. The task arrival process
at each edge node is a non-homogeneous Poisson process
with the expected arrival rate An(t) uniformly distributed
in [5,15] tasks/second. Nearby edge nodes are connected
by LAN or wired P2P connection (with migration delay
of dn = 10 ms) and each edge node can connect to the
cloud though the core network. We use the Amazon on-
demand instance, m4.large [49], to process excessive tasks
from edge nodes, with the computation capacity of 7.8 Giga
CPU cycles/second and the pricing rate of 0.1 dollar/hour
per instance. When migrating mobile tasks to nearby edge
nodes or outsourcing these tasks to the cloud, input data
of these tasks should be transmitted on the LAN or in the
core network. Take augmented reality tasks as an example.
When migrating augmented reality tasks among edge nodes
or to the cloud, slotted frames of videos, i.e., figures, should
be transmitted. As processing one 420 kB figure requires
around 1 Giga CPU cycles computation [50], we set the
transmission ratio c = 3.36 Mbits/Giga CPU cycles.

6.1.1 Task Arrival Pattern

We use three types of traffic patterns to simulate the time-
varying property of mobile task arrivals at edge nodes,
including one trace-driven traffic pattern and two mathe-
matical traffic patterns.

Trace-driven traffic pattern: Mobile edge computing has
not been widely deployed in practice, thus we can not trace
the mobile task arrivals at edge nodes precisely. In this
work, we use the task arrival traces of Google compute
cells to simulate the mobile task arrivals at edge nodes.
In Google clusters, a compute cell is composed of several
well connected computing machines with high-bandwidth
network, which is similar to an edge node. We employ
the tracelogs of Google compute cells, i.e., Google cluster
usage traces [51], to imitate the real traces of mobile task
arrivals at edge nodes. These traces record the timestamps
of task events (e.g., submit, schedule, finish, etc.) in task
event tables and the CPU usage of compute cells in resource
usage tables. The task arrival rates in terms of computation
requests are computed as

Acell = (tfinish − tschedule) · U cpu · µcpu · rtask, (54)

where tfinish and tschedule are the timestamps of task fin-
ishing and scheduling to machines in a compute cell. U cpu

represents the average CPU usage and µcpu is the serving
rate of a CPU. rtask is the number of tasks arriving at the
cell within a time slot. We obtain 5 traces of task arrivals
over a 1010 ms period by slightly modifying the traces of a
Google compute cell (similar to [7]). The results are shown
in Fig. 3.

Random traffic pattern: Each edge node has mobile tasks
with random arrival rates uniformly distributed in [5,15]
tasks/second.

Normal traffic pattern: Each edge node has mobile tasks
with normally distributed arrival rates through T time
slots with the expectation 10 tasks/second, and standard
deviation 2 tasks/second. Note that we take the absolute
value if the arrival rate at any time slot is negative.

6.1.2 Benchmark Algorithms
We compare WiDaS with three benchmark algorithms:

KKT-based algorithm: The KKT-based algorithm computes
the optimal solution by directly solving the convex opti-
mization problem P2 with KKT conditions in each time
slot. According to the analysis in Sec. 5.1, the computation
complexity of the KKT-based algorithm is O(TL · 4N ).

Edge-first algorithm: Mobile tasks are processed at edge
nodes with high priority if the edge nodes have sufficient
computation capabilities (i.e., µn > An(t)). Otherwise, the
excessive tasks are outsourced to the cloud.

Fair-ratio algorithm: The mobile tasks scheduled to an
edge node are proportional to the task arrival at the edge
node, with the ratio identical among all the edge nodes.

6.1.3 Metrics
In the simulation results, we take the average response time

in T time slots, i.e., 1
T

T−1∑
t=0

D(t), as the metrics of system

performance, and the average system cost in T time slots,

i.e., 1
T

T−1∑
t=0

C(t), as the metrics of system cost.

6.2 Efficiency and Effectiveness Evaluation
We compare WiDaS with the benchmark algorithms by
conducting simulations under the three traffic patterns. The
results demonstrate that WiDaS shows two-fold benefits
of high efficiency and effectiveness. We first illustrate the
average results of different algorithms in Fig.4. To further
illustrate the details of time-varying response time and
system cost, we present the results over 100 time slots in
Fig. 5.

6.2.1 Efficiency
The simulation results show that WiDaS can achieve the approx-
imate results with the KKT-based algorithm while reducing the
execution time significantly.

As shown in Fig. 4 and Fig. 5, in terms of both response
time and system cost, WiDaS has the approximate results
with the KKT-based algorithm. In the simulation under
the trace-driven traffic pattern, WiDaS has slightly higher
response time and system cost than the KKT-based algo-
rithm. This is because under the trace-driven task arrival
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(a) Response time

(b) System cost

Fig. 4. Results of algorithms under different task arrival patterns.

(a) Response time

(b) System cost

Fig. 5. The response time and system cost in different time slots: random
task arrival pattern, V = 5, θ = 1 dollar/h.

pattern, mobile task arrivals at edge nodes are much more
fluctuated with time. Removing the heterogenous compu-
tation capacity constraints (i.e., the inequation constraints
in P2) of edge nodes results in performance degrade in the
WiDaS algorithm. According to the complexity analysis in
Sec. 5.1 and 5.2, the KKT-based algorithm has an exponential
complexity while WiDaS has a polynomial complexity. We
have also tested the execution time by repeating for 100
times, and the WiDaS algorithm can complete in 9.2ms
in each time slot while the KKT-based algorithm requires
902.5ms (Surface laptop 2018 version, 13.5-inch, MATLAB
R2017b). Therefore, WiDaS has the benefit of high efficiency.

6.2.2 Effectiveness
The simulation results in Fig. 4(a) demonstrate that WiDaS can
reduce the average response time by 24.1%-64.4% over the Fair-
ratio algorithm and 12.7%-47.2% over Edge-first algorithm with
a reduced system cost.

In terms of response time, compared with the Fair-ratio
algorithm, WiDaS reduces the average response time by
24.1%, 37.7%, and 64.4% under the random, normal, and
trace-driven task arrival pattern, respectively. In the WiDaS
algorithm, the heterogeneity of edge computation capacities
is taken into consideration and the loads of edge nodes can
be well balanced. Thus, the average response time can be
effectively reduced over the Fair-ratio algorithm. Compared
with the Edge-first algorithm, WiDaS reduces the average
response time by 47.2%, 12.7%, and 33.4% under the three
task arrival patterns. In the Edge-first algorithm, the com-
putation delay at each edge node is highly dependent on
the task arrival rate in each time slot, thus the response
time fluctuates greatly with time, as shown in Fig. 5(b).
The WiDaS algorithm can take advantage of cloud resource
agility to accommodate the dynamic tasks at edge nodes
and can fully utilize the system resources through task
migration among unbalanced edge nodes. Therefore, WiDaS
can effectively reduce the response time over the Edge-first
algorithm.

In terms of system cost, WiDaS can maintain the average
system cost under the budget and can effectively reduce the
average system cost over the Fair-ratio algorithm, as shown
in Fig.4(b). The Fair-ratio algorithm does not consider the
heterogeneity of edge computation capacities, and thus can
not fully utilize the computation capacities of edge nodes,
leading to high outsourcing cost. The Edge-fist algorithm
processes mobile tasks at edge nodes with higher priority
and only uses cloud resources to process the excessive tasks
from edge nodes. Thus, the usage of cloud resources is
highly dependent on the arrival rates of mobile tasks, and
the system cost of the Edge-first algorithm varies greatly
with time, as shown in Fig. 5(b). When edge nodes can pro-
vide sufficient computation capacities for mobile tasks, the
Edge-first algorithm has lower system cost, e.g., under the
normal traffic pattern in Fig. 4(b). Otherwise, the Edge-first
algorithm has higher system cost than the WiDaS algorithm,
such as under the trace-driven traffic pattern in Fig. 4(b).

6.3 Performance-cost Tradeoff

We experimentally show the relationship between the av-
erage response time and the system cost, helping system
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(a) Response time with V

(b) System cost with V

Fig. 6. Performance-cost tradeoff with V , θ = 2 dollar/h.

administrators to properly trade off the system performance
and cost. According to the conclusion of Theorem 1, the
performance-cost tradeoff relies on the weight ratio V . In
this section, we first illustrate the average response time and
system cost with changing V in Fig. 6. Then we show the
relationship between the response time and system cost by
changing the budget limit in Fig. 7.

Our simulation results show that the average system cost of
WiDaS increases with the weight ratio V while the response time
decreases with V . In the Edge-first and the Fair-ratio algorith-
m, the usage of cloud resources and task scheduling results
mainly rely on mobile task arrivals and edge computation
capabilities, thus the system cost and the response time
do not change significantly with V . When V is small, the
WiDaS algorithm decreases the usage of cloud resources to
reduce the system cost. Most mobile tasks are processed at
edge nodes, incurring high response time. As V increases,
the response time becomes more dominant in the objective.
To reduce the response time, WiDaS outsources more tasks
to the cloud, resulting in high system cost.

The simulation results demonstrate that the average response
time of WiDaS decreases with the budget limit θ while the average
system cost increases with θ. Fig. 7 shows the average results
of performance-cost tradeoff with 95% confidence interval.
Note that as the we obtain the results with the Monte
Carlo method [52], i.e., simulations are repeated with the
edge task arrivals and computation capacities uniformly
distributed among certain value ranges in each simulation,
the ranges of the results are directly influenced by the value
ranges of the edge computation capacities and task arrivals.

Fig. 7. The average results of performance-cost tradeoff with 95%
confidence interval by changing θ, V = 5.

In these simulations, the value range of task arrivals and
computation capacities is large, thus, the results with 95%
confidence interval are also significantly scattered. It can be
observed that when the budget limit is significantly high
(larger than 1.5 dollars/hour), the average system cost no
longer increases and the average response time can not be
further reduced. This is because when the budget limit is
high, sufficient cloud computation resources can be tenant-
ed. The communication delay among edge nodes or from
edge nodes to the cloud becomes the bottleneck to reduce
the average response time. Tenanting more cloud instances
can not further reduce the response time.

7 CONCLUSIONS

In this paper, we have solved dynamic task scheduling
in the cloud assisted mobile edge computing system to
facilitate the functionality of the MEO in the ETSI MEC
architecture. The problem has been formulated as a dynamic
optimization problem with queuing analysis, aiming at op-
timizing the average task response time within the resource
budget limit. We have proposed the WiDaS algorithm to
solve this problem, which is proved to have polynomial
computation complexity. Extensive simulations have been
conducted to evaluate WiDaS under different task arrival
patterns, and the results demonstrate that WiDaS shows
two-fold benefits of high efficiency and effectiveness. For the
future work, we will investigate the workload scheduling
problem in the cloud-edge-device system, in which the ca-
pabilities of mobile devices are also taken into consideration.
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