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Abstract—One App running on mobile devices often needs to 

invoke several frequently-used Application Programming 

Interfaces (APIs) to perform service provision. However, when 

these mobile devices roam around another city, these APIs’ QoS 

performance changes or degradation often make App failure. 

Hence, accurate QoS prediction before these APIs are invoked 

becomes an important issue for App developers. In this paper, 

we propose an accurate API QoS prediction approach by using 

user similarity computation and base-station similarity 

computing. The experimental results demonstrate the efficiency 

and effectiveness of our approach. 
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I. INTRODUCTION  

With the rapid development of smart phones and other 
mobile devices, the Internet is no longer confined to PC. More 
and more smart mobile devices invoked the Internet by 
connecting base-stations which have been built everywhere, 
forming cellular networks. Based on the growing popularity 
of mobile devices, a large number of Apps have been 
developed and Apps running on mobile devices often need to 
invoke multiple Application Programming Interfaces (APIs) 
to perform service provision by connecting base-stations of 
cellular networks. Then, it is very important to know which 
APIs have better QoS (values) for Apps performance 
optimization. Hence, how to accurately predict the QoS before 
APIs are invoked is a very important issue for Apps 
performance optimization of mobile devices.  

The API QoS are notably more volatile, and mobile 
devices are often roaming around in cellular networks. Due to 
the mobility of mobile devices, history QoS of APIs in the past 
base-station will fail when mobile devices move around 
another city and the API QoS in the current base-station is 
empty. Note that in order to easily understand our approach, 
we take user represent mobile device in this paper. Although 
many QoS prediction approaches have been proposed in 
Internet environments, but they often fail in making accurate 
API QoS prediction in cellular networks [1]. For instance, for 
one user called Sam in Beijing, when use one video App on 
his mobile phone, the App will invoke one (video compression 
encoding) API in cellular network environments, and then its 
response time is 100 msec on average where the host server 
running the API is deployed in Beijing. When the user roam 
around Shanghai, if the App still use the API, traditional 
prediction approaches often monitor its historical QoS data of 
Beijing and obtained response time is still 100 msec.  However, 
its real response time is higher than 100 msec which leads a 

sharp drop in App QoS performance, or even App invoking 
failure. The main reason why traditional approaches fail in 
accurate QoS prediction is that they do not take user mobility 
into account [2]. When one Beijing user travels to Shanghai, 
the cellular network environment has changed and the history 
QoS data of the API in Beijing is invalid for the Shanghai user. 

Different from traditional approaches, when users roam 
around another city, if there are some users in the same base-
station, they invoked the API, then we can predict the QoS 
based on their historical data; otherwise, we use other users’ 
historical data from other base-stations where they invoked 
the API.  

II. OUR APPROACH 

In this approach, we firstly calculate similar base-stations 
by adopting Pearson Correlation Coefficient or find similar 
users, and then select Top-K users or base-stations to predict 
API QoS. 
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Figure 1.   Procedure of our approach 

A． Similarity Computation 

When we predict the QoS of API a invoked by the active 
user u, we must take the current base-station of the active user 
u into account. According to the API a invoked by user u, we 
can divide the situation into two cases, as follows: 

Case 1. The API a invoked by the active user u has history 
API QoS in the current base-station, i.e., users in control of 
the base-station adopted the same API as the active user u 
before, so the history QoS of the API a is stored in the current 
base-station. 

Case 2. The API a invoked by the active user u has no 
history QoS in the current base-station, i.e., users in control 
of the base-station did not adopt the API a before, so there is 
no history QoS of the API a. 

1) User Similarity Computation 

For situation as Case 1 descripted, the history API QoS in 
the past base-station of the active user u is invalid and it cannot 
be used for user similarity computation. However, we can use 
the history QoS of the same API as the active user u adopts. 



More and more base-stations are built and the distribution is 
concentrated. Based on the condition, we think users in the 
current base-station who adopted the API a are similar.  

The similar users set of active user u is descripted as 
𝑆𝑢(𝑢𝑖) = {𝑢1, 𝑢2, … , 𝑢𝑖 , … , 𝑈}, 𝑖 = 1,2, … , 𝑈 , where U 
denotes the total number users adopted the API a in the current 
base-station. 

2) Base-Station Similarity Computation 

In this paper, we assume 𝑞𝑢,𝑎
𝑡  represents the history API 

QoS of user u repeatedly invokes API a (a=1,2,3, …) at the t-
th (t=1,2,3, …) time.  

For situation as Case 2 descripted, i.e., the API a invoked 
by the active user u has no history API QoS in the current 
base-station. We should find the similar base-stations for it. 
Based on the Pearson Correlation Coefficient (PCC), base-
station similarity computation employs the similarity between 
base-stations. We calculate the similarity between base-
station b1 and base-station b2 by the following: 
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where 𝑠𝑖𝑚𝑏1,𝑏2
 is the similarity between base-station b1 and 

base-station b2.   𝑃𝑏1,𝑎
𝑢   represents the QoS of API a invoked 

by user u in the base-station b1.  𝐸𝑏1,𝑎  represents the QoS 

expectation of API a invoked in the base-station b1. Where A 
denotes the number of same APIs that invoked in base-station 
b1 and b2. 

If two base-stations happen to have similar QoS 
experience on a few same APIs invoked, then using the PCC 
will overestimate the similarities of base-stations. To address 
this problem, we employ a significance weight to reduce the 
influence of a small number of similar APIs invoked [3]. An 
enhanced PCC between different base-stations is defined as 
follows: 
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where |𝐴𝑏1
∩ 𝐴𝑏2

| is the number of APIs that invoked both in 

the base-station b1 and the base-station b2, and |𝐴𝑏1
| and |𝐴𝑏2

| 
are the number of APIs invoked in the base-station b1 and 
base-station b2 respectively. 

B． Top-K Similarity Selection 

We select Top-K similar users based on the distance 
between other users and the active user. The shorter the 
distance, the stronger the similarity. The Top-K similar users 
set of active user u as 𝑆𝑢

′ (𝑢𝑖) = {𝑢𝑖  ∈  𝑆𝑢(𝑢𝑖), 𝑑𝑖𝑠𝑡(𝑢, 𝑢𝑖) >
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0, 𝑢 ≠ 𝑢𝑖}, where 𝑑𝑖𝑠𝑡(𝑢, 𝑢𝑖) represents the distance between 
u and 𝑢𝑖(𝑖 = 1,2, … , 𝐾) . 

We use the Top-K to rank the base-stations based on PCC 
similarities and select the Top-K most similar base-stations for 
making value prediction. A set of Top-K similar base-stations 
of base-station b can be found as 𝑆𝑏(𝑏𝑖) = {𝑏𝑖|𝑠𝑖𝑚𝑏,𝑏𝑖

′ >

0, 𝑏𝑖 ≠ 𝑏, 𝑖 = 1,2, … , 𝐾}. 

C． QoS Prediction 

According to whether the QoS of API invoked by active 
users exist history data in the current base-station, we predict 
the API QoS for active users as following:  

1) Based on the user similarity, we predict the API QoS of 
the active user u as follows: 
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where 𝑞𝑢𝑖,𝑎
𝑡  represents the QoS of API a invoked by user 

𝑢𝑖  at the t-th time, T is the total times that the API a 
invoked by user 𝑢𝑖(𝑖 = 1,2, … 𝐾) repeatedly.  

2) Based on the Top-K similar base-stations, we proposed 
an approach to predict the API QoS for the API a 
invoked by active user u as follows: 
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where 𝐸𝑏𝑖,𝑎 represents the QoS expectation of API a 

invoked in the base-station 𝑏𝑖(𝑖 = 1,2, … , 𝐾)  and b 
represents the current base-station of the active user u. 

III. EXPERIMENT AND CONCLUSION 

We conducted simulation-based experiment with the NS-
3 simulator1. We simulated mobile devices and base-stations 
by the LTE module. The experimental results show the 
efficiency and effectiveness of our approach. In this paper, we 
presented an approach to predict the new APIs’ QoS of base-
station with consideration of users’ mobility and the volatile 
of API QoS. Compared to previous approaches, our approach 
considers not only the volatile of API QoS but also users’ 
mobility to adapt the mobile environment. More than that, we 
have proposed two different approaches according to whether 
the related QoS in the current base-station.  
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