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1 Towards Diversified IoT Image Recognition
2 Services in Mobile Edge Computing
3 Chuntao Ding , Ao Zhou , Xiao Ma , Ning Zhang,Member, IEEE,

4 Ching-Hsien Hsu , Senior Member, IEEE, and Shangguang Wang , Senior Member, IEEE

5 Abstract—With the rapid development of the Internet of Things (IoT) and emerging Mobile Edge Computing (MEC) technologies,

6 various IoT image recognition services are revolutionizing our lives by providing diverse cognitive assistance. However, most existing

7 related approaches are difficult to meet the diversified needs of users because they believe that the MEC platform is a single layer. In

8 addition, due to the mutual interference between the data, it is not easy for them to extract the discriminative features (DFs) necessary

9 to analyze the input data. To this end, this article proposes an IoT image recognition services framework for different needs in the MEC

10 environment, which consists of Hierarchical Discriminative Feature Extraction (HDFE) and Sub-extractor Deployment (Sub-ED)

11 algorithms. We first propose HDFE, which can avoid mutual interference between data by separately optimizing the data structure,

12 thereby generating an extractor that extracts effective DFs. Then there is Sub-ED, which divides the extractor into a series of sub-

13 extractors and deploys them on appropriate MEC platforms. By doing so, the IoT device can connect to the corresponding MEC

14 platform according to its service types, and use the sub-extract to extract DFs. Then, the MEC platform uploads the extracted feature

15 data to the cloud server for further processing, e.g., feature matching. Finally, the cloud server sends the processed result back to the

16 IoT device. Experimental results show that compared with the state-of-the-art approaches, the proposed framework improves

17 recognition accuracy by about 6% and reduces network traffic by up to 94%.Q1

18 Index Terms—Internet of Things, mobile edge computing, IoT services, discriminative features

Ç

19 1 INTRODUCTION

20 1.1 Motivation & Problem Formulation

21 INTERNET of Things (IoT) image recognition services are
22 revolutionizing our lives by providing diverse cognitive
23 assistance [1], [2], [3]. Most related IoT services are based on
24 the Mobile Cloud Computing (MCC) [4], [5], [6]. Their pro-
25 cess is as follows: IoT devices first use pre-processing algo-
26 rithms (e.g., Principal Component Analysis (PCA) [7], [8]
27 and Haar [9]) to extract features from the captured data.
28 Then, the extracted feature data is sent to the cloud server
29 for further processing. Finally, the cloud server sends the
30 processed results to IoT devices. The main limitation of this

31solution is that the distance between the IoT device and the
32cloud server is long (e.g., multiple hops), resulting in a long
33delay. Mobile Edge Computing (MEC) [10], [11], [12], [13],
34[14] can solve the long delay by deploying the MEC plat-
35form with computing and storage resources close to the IoT
36device.
37This paper studies the problem of IoT image recognition
38services in the MEC environment. Fig. 1 illustrates the sys-
39tem architecture consisting of an end layer, an edge layer,
40and a cloud layer. The end layer includes some IoT devices,
41such as smartphones, driverless cars, and drones. The edge
42layer includes three MEC platforms, namely the access-level
43MEC platform, the district-level MEC platform, and the
44metro-regional-level MEC platform [15], [16]. The cloud
45layer includes a large number of cloud servers. IoT devices
46communicate with the MEC platform through base stations
47and connect to the base station through 5G or Super
48WiFi [17]. The base station connects the cloud servers
49through the Internet backbone. We assume that the image
50data set ðxi; yiÞNi¼1 is stored on the cloud servers, where N is
51the number of image data, xi 2 Rd, yi 2 Rc, d is the dimen-
52sion of xi, and c is the number of classes. The workflow is as
53follows: The IoT device first captures the image data and
54then uploads it to the edge server for pre-processing. Then,
55the edge server uploads the preprocesssed image data to
56the cloud server for further processing. Finally, the cloud
57server sends the processed results back to the IoT device.

581.2 Limitations of Prior Art

59Many related approaches [18], [19], [20] have achieved
60excellent results in providing IoT image recognition

� Chuntao Ding is with the School of Computer and Information Technol-
ogy, Beijing Jiaotong University, Beijing 100044, China.
E-mail: chuntaoding@163.com.

� Ao Zhou and Xiao Ma are with the State Key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Telecommuni-
cations, Beijing 100876, China. E-mail: {aozhou, maxiao18}@bupt.edu.cn.

� Ning Zhang is with the Department of Computing Sciences, Texas A&M
University at Corpus Christi, Corpus Christi, TX 78412 USA.
E-mail: ning.zhang@tamucc.edu.

� Ching-Hsien Hsu is with the Department of Computer Science and Infor-
mation Engineering, Asia University, Taichung 41354, Taiwan, and with
the Department of Medical Research, China Medical University Hospital,
China Medical University, Taichung 406040, Taiwan, and also with the
School of Mathematics and Big Data, Foshan University, Foshan 528000,
China. E-mail: robertchh@gmail.com.

� Shangguang Wang is with the Beiyou Shenzhen Research Institute, Shenz-
hen 518172, China. E-mail: sgwang@bupt.edu.cn.

Manuscript received 25 June 2020; revised 10 June 2021; accepted 18 Aug. 2021.
Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Shangguang Wang.)
Recommended for acceptance by A. Boukerche.
Digital Object Identifier no. 10.1109/TCC.2021.3109385

IEEE TRANSACTIONS ON CLOUD COMPUTING 1

2168-7161 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8362-8407
https://orcid.org/0000-0001-8362-8407
https://orcid.org/0000-0001-8362-8407
https://orcid.org/0000-0001-8362-8407
https://orcid.org/0000-0001-8362-8407
https://orcid.org/0000-0001-5743-9418
https://orcid.org/0000-0001-5743-9418
https://orcid.org/0000-0001-5743-9418
https://orcid.org/0000-0001-5743-9418
https://orcid.org/0000-0001-5743-9418
https://orcid.org/0000-0001-5742-8890
https://orcid.org/0000-0001-5742-8890
https://orcid.org/0000-0001-5742-8890
https://orcid.org/0000-0001-5742-8890
https://orcid.org/0000-0001-5742-8890
https://orcid.org/0000-0002-2440-2771
https://orcid.org/0000-0002-2440-2771
https://orcid.org/0000-0002-2440-2771
https://orcid.org/0000-0002-2440-2771
https://orcid.org/0000-0002-2440-2771
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
mailto:chuntaoding@163.com
mailto:aozhou@bupt.edu.cn
mailto:maxiao18@bupt.edu.cn
mailto:ning.zhang@tamucc.edu
mailto:robertchh@gmail.com
mailto:sgwang@bupt.edu.cn


IE
EE P

ro
of

61 services. However, they are usually not easy to adapt to the
62 hierarchical structure of the MEC platform to meet the
63 diverse demands of IoT image recognition services, because
64 they treat the MEC platform as a single layer. In addition,
65 because of mutual interference between data when generat-
66 ing extractors, it is not easy for them to generate extractors
67 that can extract effectively discriminative features.

68 1.3 Proposed Approach

69 In this paper, we propose an IoT image recognition services
70 framework for different needs in MEC, where the edge layer
71 consists of three MEC platforms. In the proposed frame-
72 work, we first propose Hierarchical Discriminative Feature
73 Extraction (HDFE) algorithm to generate an extractor E on
74 the cloud server. Follow that, we propose a Sub-extractor
75 Deployment (Sub-ED) algorithm to divide E into sub-
76 extractors, i.e., E1, E2, and deploy them on appropriate
77 MEC platforms. Then, we use E and these sub-extractors to
78 extract different levels of Discriminative Features (DFs)
79 from the data set on the cloud servers and form DFs sets,
80 i.e., ETX, E1TX and E2TX. When receiving the image data
81 (e.g., x) from IoT devices, the corresponding MEC platform
82 uses the deployed sub-extractor (e.g., E1) to extract DFs
83 (e.g., E1Tx) from the image data. Then, the MEC platform
84 uploads the extracted DFs data to the cloud server for proc-
85 essing. Finally, the cloud servers send the processed results
86 to IoT devices. Our goal is to deploy different extractors on
87 the hierarchical MEC platforms to satisfy various IoT image
88 recognition services in terms of accuracy and response time.

89 1.4 Challenges and Proposed Solutions

90 The first key challenge is how to generate an extractor that can
91 extract effective DFs. DFs are important because they deter-
92 mine the performance of IoT image recognition services,
93 e.g., the recognition accuracy is a very important indicator.
94 In addition, DFs affect network traffic from MEC platforms
95 to cloud servers as well as network transmission time and
96 feature matching time on the cloud servers. Effective fea-
97 tures refer to a small number of features that can achieve
98 high recognition accuracy. However, it is challenging to
99 extract effective DFs in MEC platforms. There are two rea-

100 sons. (i) Generating an extractor to extract DFs requires the
101 use of the label information of the data set. However, there

102is no such information in the MEC platform. (ii) Existing
103algorithms simultaneously optimize the structure of data,
104which leads to mutual interference, making it difficult to
105generate extractors that can extract effective DFs.
106To solve this challenge, we propose the HDFE algorithm
107to generate an extractor on the cloud servers. Since the
108extraction process of the extractor uses the label information
109of the data, the extractor can extract the DFs. To avoid
110mutual interference between data, the HDFE explores the
111structure information of the data hierarchically. In the
112HDFE algorithm, there are two ways to analyze the struc-
113tural information of the data set. The first is to first minimize
114the intra-class structure, then maximize the inter-class struc-
115ture and name it HDFE1. The second is to first maximize the
116inter-class structure, then minimize the intra-class structure
117and name it HDFE2. Both HDFE1 and HDFE2 can generate
118extractors that extract effective DFs from the data set by
119avoiding mutual interference between data. In addition, we
120also conclude through discussions and experiments that
121HDFE1 is better in terms of recognition accuracy.
122The second key challenge is how to divide the extractor E into
123sub-extractors to meet the diverse demands of IoT devices. In real-
124world scenarios, multiple layers of MEC platforms are
125deployed between IoT devices and cloud servers. These dif-
126ferent levels of MEC platforms are targeted at different
127applications. For example, the access-level MEC platform is
128suitable for applications that are slow to move, even not
129mobile and latency-sensitive. The district-level MEC plat-
130form is primarily intended for fast-moving and latency-sen-
131sitive applications. One solution is to deploy different sub-
132extractors on MEC platforms to extract DFs of different
133sizes. However, it is challenging to divide E into sub-extrac-
134tors and deploy them on appropriate MEC platforms.
135To address this challenge, we propose the Sub-ED algo-
136rithm. In the Sub-ED algorithm, we analyze the nature of
137the extractor E and divide it into two sub-extractors, E1 and
138E2. Note that, E1 � E2 � E. For instance, since access-level
139and district-level MEC platforms requires to provide fast
140response for IoT services, we place E1 on them to extract a
141small number of DFs, at the expense of recognition accuracy
142in exchange for fast response. The metro-regional-level
143MEC platform requires to consider both response time and
144recognition accuracy, we can place E2 on it. In addition, we
145deploy E on the cloud servers, if we require the highest rec-
146ognition accuracy, we can use the E to extract the most
147effective DFs. Thus, we can meet the diverse demands in
148terms of recognition accuracy and response time.

1491.5 Novelty and Advantages Over Prior Art

150The technique novelty of this paper is to propose the IoT
151services for different needs framework, which consists of
152HDFE and Sub-DE algorithms. The key technical depth of
153this paper is to generate an extractor E, and divide E into
154sub-extractors to adapt the hierarchical structure of the
155MEC architecture. The key advantages of the proposed
156framework over the previous approaches are two-fold: (i) It
157has a higher accuracy because it can obtain an extractor E
158that can extract more effective DFs. (ii) It can meet diverse
159demands of IoT image recognition services. Experimental
160results show that the proposed framework improves

Fig. 1. The system architecture.
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161 accuracy by about 6% and reduces the network traffic by up
162 to 94% compared with the state-of-the-art approaches.
163 The following paper is organized as follows. Section 2
164 reviews the related work. Section 3 introduces the design of
165 the proposed framework. Section 4 provides an experimen-
166 tal evaluation. Section 5 concludes and outlines future work.

167 2 RELATED WORK

168 2.1 IoT Image Recognition Services

169 IoT image recognition services refers to the use of IoT devi-
170 ces to provide users with various image recognition serv-
171 ices. Due to the limited computing and storage resources of
172 IoT devices, most services delivery methods are usually
173 based on MCC [21] and MEC [22], [23]. That is, when cap-
174 turing the the data, the IoT device first uses feature extrac-
175 tion algorithms [24], [25] to pre-process it or sends the raw
176 image data to the MEC platform to pre-process it [18]. Then,
177 the IoT device or the MEC platform sends the pre-processed
178 image data to the cloud server. After receiving the pre-proc-
179 essed image data, the cloud server performs feature match-
180 ing algorithms to obtain results and sends the results back
181 to the IoT device. For example, Li et al. [19] upload down-
182 scaled image data to the cloud server to reduce the corre-
183 sponding overhead of data transfer. Hu et al. [18] use the
184 local binary patterns [26] to extract features on the edge
185 server before uploading the raw image data to the cloud
186 server to reduce network traffic. Drolia et al. [27] use the
187 caching model along with novel optimization to minimize
188 latency by adaptively balancing load between the edge and
189 the cloud. Wang et al. [20] send the raw image data to the
190 edge server for pre-processing. Then, the edge server sends
191 the pre-processed data to the cloud server for processing.

192 2.2 Discriminative Feature Extraction Algorithms

193 Effective Discriminative Features (DFs) refer to features that
194 enable the sample to be well distinguished from other sam-
195 ples. In recognition services, effective DFs are important
196 because they determine recognition accuracy. In addition,
197 they affect network traffic from IoT devices to the cloud
198 server and feature matching time on the cloud server. In
199 order to obtain effective DFs, a large number of related

200algorithms have been proposed in recent years [20], [28],
201[29], [30], [31], [32], [33], [34], [35], [36]. Motivated by [20],
202[28], [34], [36], there are four structures in the image data
203set, the global intra-class structure, the global inter-class
204structure, the local intra-class structure, and the local inter-
205class structure. However, most of these algorithms either
206include some of structures (e.g., linear discriminant analy-
207sis [28], marginal fisher analysis [34], discriminant neigh-
208borhood embedding [33] and double adjacency graphs-
209based discriminant neighborhood embedding (DAG-
210DNE) [35]) or contain all of structures but optimize them at
211the same time (e.g., joint global and local structure discrimi-
212nant analysis (JGLDA) [36] and weight-adaptive projection
213matrix learning (WAPL) [20]). Algorithms that contain only
214a subset of structures can affect the capabilities of the gener-
215ated extractor because some of the structural information is
216lost. In addition, algorithms that optimize these structures
217at the same time cause insufficient optimization of each
218structure and affect the ability of the generated extractor to
219extract DFs.

2203 DESIGN OF THE PROPOSED FRAMEWORK

2213.1 Overview

222Fig. 2 shows the overview of the proposed framework,
223which is split into an offline stage and an online stage.
224In the offline stage, we first develop the HDFE algorithm
225to generate the extractor E on cloud servers. Then, we pro-
226pose the Sub-DE algorithm to divide extractor E into sub-
227extractors E1 and E2. Note that, E1 � E2 � E. Follow that,
228we use E1, E2, and E to extract different levels of DFs from
229the data set and form DFs sets, i.e., DFs1 set, Fs2 set, and
230DFs3 set. Finally, we deploy E1, E2 and E on appropriate
231MEC platforms.
232In the online stage, IoT devices first capture the image
233data and upload it to the corresponding MEC platform.
234Then, the MEC platform pre-processes the image data [18],
235such as object detection, grayscale, and alignment. Follow
236that, the MEC platform uses the extractor (e.g., E1) to
237extract DFs (e.g., DFs1) from the pre-processed data and
238sends the data to cloud servers. After receiving the extracted
239data, the cloud servers match the DFs (e.g., DFs1) with DFs

Fig. 2. The proposed framework overview.
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241 extracted DFs from EDFs1 set. Finally, cloud servers return
242 the label information of the most similar DFs to IoT devices.
243 According to China Unicom’s MEC platform, the edge
244 layer is divided into three MEC platforms: access-level
245 MEC platform, district-level MEC platform and metro-
246 regional-level MEC platform [15], [16], [37]. The access-level
247 MEC platform is close to the base station and is suitable for
248 massive machine type communication (mMTC) applica-
249 tions, which means that it needs to support a large number
250 of devices in a small area, such as Internet of Things (IoT)
251 use cases. Compared with the access-level MEC platform,
252 the coverage of the MEC platform at the district-level is
253 increased. The district-level MEC platform is suitable for
254 ultra-reliable low-latency communication (uRLLC) applica-
255 tions, which is used for fast-moving and latency-sensitive
256 applications. The convergence-level MEC platform can
257 cover the areas of a city. The metro-regional-level MEC plat-
258 form is primarily used for enhanced mobile broadband
259 (eMBB) applications for data-driven use cases that require
260 high data rates across a wide coverage area.

261 3.2 The HDFE Algorithm

262 The goal of the HDFE algorithm is to generate an extractor
263 E that can extract effective DFs by exploring the structural
264 information of the data set. E aims to extract DFs from the
265 data set on the cloud server and the uploaded data on
266 the edge server. DFs indicate that features from samples of
267 the same class label are compacted together, and features
268 from samples of different class labels are separated. How-
269 ever, most existing algorithms have difficulty obtaining DFs
270 because they simultaneously optimizing the structural
271 information of the data set, causing the data to interfere
272 with each other. Fig. 3 shows the process of optimizing
273 intra-class and inter-class structures simultaneously. The
274 red circle wants to “push” away samples of a different class,
275 i.e., the blue triangle, the blue cube and the blue rectangle.
276 At the same time, the sample with the same class label (i.e.,
277 the blue circle) wants to “pull” the red circle, as shown in
278 Fig. 3b. When intra-class and inter-class structures are opti-
279 mized simultaneously, samples interfere with each other
280 and affect the performance of the extracted DFs, as shown
281 in Fig. 3c.
282 To solve this problem, we propose the HDFE algorithm,
283 which hierarchically explores the structural information of
284 the data set to avoid the interference between samples. We
285 first explore intra-class and inter-class structures as follows.

2863.2.1 Exploring the Intra-Class Structure

287The intra-class structure includes global intra-class sub-
288structure Sgw and local intra-class sub-structure Slw. The
289global intra-class sub-structure Sgw indicates the relation-
290ship between the i-th sample in class m, xm

i , and the mean
291of the samples in classm, mm, which can be quantified as

Sgw ¼
Xc

m¼1

XNm

i¼1

ET
intra1ðxm

i � mmÞðxm
i � mmÞTEintra1; (1)

293293

294where Nm is the number of samples in class m, Eintra1 is the
295extractor. The local intra-class sub-structure Slw indicates
296the pairwise relationship between the samples with the
297same class label, which can be quantified as

Slw ¼ 1

2

X
ij

jjET
intra1xi�ET

intra1xjjj2Ww
ij

¼ trfET
intra1XðDw �WwÞXTEintra1g

; (2)

299299

300where Ww
ij ¼ 1, if and only if i 2 Iw

k1
ðjÞ or j 2 Iw

k1
ðiÞ; other-

301wise, Ww
ij ¼ 0. Iw

k1
ðiÞ denotes the index set of the k1 nearest

302neighbors of sample xi with the same class label. Dw is a
303diagonal matrix, i.e.,Dw

ii ¼
P

j W
w
ij .

304The global and local intra-class sub-structures help to
305generate the extractor Eintra1. In addition, the global and
306local intra-class sub-structures have different contributions
307to the generation of the extractor. To this end, we introduce
308a parameter a 2 ½0; 1� to tradeoff global and local intra-class
309sub-structures. The intra-class structure is designed to gen-
310erate an extractor to extract DFs from samples with the
311same class label. Therefore, we minimize the extracted DFs
312and quantify the objective function of the intra-class struc-
313ture as

min
Eintra1

aSgw þ ð1� aÞSlw s:t: ET
intra1Eintra1 ¼ I: (3) 315315

316

3173.2.2 Exploring the Inter-Class Structure

318The inter-class structure includes global inter-class sub-
319structure Sgb and local inter-class sub-structure Slb. The
320global inter-class sub-structure Sgb indicates the relationship
321between mm and the mean of all samples m, which can be
322quantified as

Sgb ¼
Xc

m¼1

NmE
T
inter1ðmm � mÞðmm � mÞTEinter1; (4)

324324

325where Einter1 is the extractor. The local inter-class sub-struc-
326ture Slb indicates the pairwise relationship between the
327samples with different labels, which can be quantified as

Slb ¼ 1

2

X
ij

jjET
inter1xi�ET

inter1xjjj2Wb
ij

¼ trðET
inter1XðDb �WbÞXTEinter1Þ

; (5)

329329

330where Wb
ij ¼ 1, if and only if i 2 Ib

k2
ðjÞ or j 2 Ib

k2
ðiÞ; other-

331wise, Wb
ij ¼ 0. Ib

k2
ðiÞ denotes the index set of the k2 nearest

332neighbors of sample xi with different class labels. Db is a
333diagonal matrix, i.e.,Db

ii ¼
P

j W
b
ij.

Fig. 3. An illustration of optimizing intra-class and inter-class structures
at the same time.
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335 global and local inter-class sub-structures. The inter-class
336 structure is designed to generate the extractor to extract DFs
337 from images with different class labels. Thus, we maximize
338 the extracted DFs and quantify the objective function of the
339 inter-class structure as

max
Einter1

bSgb þ ð1� bÞSlb s:t: ET
inter1Einter1 ¼ I: (6)341341

342

343 3.2.3 Optimization

344 Our goal is to generate an extractor E that can extract effec-
345 tive DFs. The nature of DFs is that if they come from the
346 same class of samples, they are compacted together; other-
347 wise, they will be separated. There are two ways to generate
348 the extractor by exploring these sub-structures hierar-
349 chically: the first way is to first optimize Eq. (3) and then
350 optimize Eq. (6), called HDFE1. The second way is to first
351 optimize Eq. (6) and then optimize Eq. (3), called HDFE2.
352 Fig. 4 illustrates the process of HDFE1. The red circle is
353 first “pulled” by the blue circle of the same class label, as
354 illustrated in Fig. 4b. Then, the red circle “pushes” the blue
355 triangle, the blue cube and the blue rectangle away, as illus-
356 trated in Fig. 4c. Fig. 4d shows the results. Similarly, Fig. 5
357 illustrates the process of HDFE2. That is, the red circle first
358 “pushes” the blue triangle, the blue cube and the blue rect-
359 angle away, as illustrated in Fig. 5b. Then, the red circle is
360 “pulled” by the blue circle, as illustrated in Fig. 5c. Fig. 5d
361 shows the results.

362 Algorithm 1. Eintra1

363 Input: Data set ðxi; yiÞNi¼1, parameters a and k1;
364 Output: Eintra1;
365 1: Compute

Pc
m¼1

PNm
i¼1ðxm

i �mmÞðxm
i �mmÞT ;

366 2: ComputeXðDw�WwÞXT ;
367 3: Compute Fintra1, where Fintra1 ¼ a

Pc
m¼1

PNm
i¼1ðxm

i �
368 mmÞðxm

i �mmÞTþ ð1� aÞtrðXðDw�WwÞXT Þ;
369 4: Eigendecompose Fintra1, suppose its eigenvalues are �i,
370 i ¼ 1; . . . ; d, and its corresponding eigenvectors are ei.
371 Assume �1 < ; . . . ; < �i < ; . . . ; < �d;
372 5: Eintra1¼½e1; . . . ; er�, where r is the number of negative
373 eigenvalues;
374 6: return Eintra1.

375 The objective functions of HDFE1 and HDFE2 include
376 two steps. For HDFE1, its first step is to minimize aSgw þ
377 ð1� aÞSlw. Based on the results, the second step is to maxi-
378 mize bSgb þ ð1� bÞSlb. That is, for the first step, we obtain
379 the extractor Eintra1 and based on it we obtain V ¼ ET

intra1X.
380 For the second step, we obtain the extractor Einter1 and
381 based on it and featuresV, we obtain DFs, i.e., L ¼ ET

inter1V.

382To gain more insight, according to Eq. (3), the first step of
383the HDFE1 is quantified as

min
Eintra1

ET
intra1

"
a
Xc

m¼1

XNm

i¼1

ðxm
i � mmÞðxm

i � mmÞT

þ ð1� aÞtrðXðDw �WwÞXT Þ
#
Eintra1

s:t: ET
intra1Eintra1 ¼ I:

; (7)

385385

386

387Since theDw is a real diagonal matrix, it is a real symmet-
388ric matrix [38]. Thus, Dw�Ww is a real symmetric matrix.
389For simplicity, we denote Fintra1 ¼ a

PC
m¼1

PNm
i¼1ðxm

i �
390mmÞðxm

i �mmÞTþð1�aÞtrðXðDw�WwÞXT Þ. Based on [20],
391Fintra1 is a real symmetric matrix. We switch Eq. (7) to a sim-
392ple eigenvalue and eigenvector problem. Based on the
393Lagrange multiplier, Eq. (7) forms the Lagrangian function

zðEintra1;LÞ ¼ trðET
intra1Fintra1Eintra1Þ

�trðLðET
intra1Eintra1�IÞÞ ; (8)

395395

396where L¼½�1; . . . ; �n�. Then, we have Fintra1ei¼�iei by set-
397ting @zðEintra1;LÞ

@Eintra1
¼ 0. Thus, Eq. (8) can be rewritten as

Eintra1¼arg min
ei

Xd
i¼1

eTi Fintra1ei ¼arg min
ei

Xd
i¼1

�i: (9)
399399

400

401To optimize Eq. (9), we choose all negative eigenvalues of
402Fintra1. Thus, assuming that the number of negative eigen-
403values of Fintra1 is r, Eintra1¼½e1; . . . ; er�. The process of the
404first step is given in Algorithm 1.
405Based on the first step, we obtain Eintra1 and features V,
406i.e., V¼ET

intra1X. According to Eq. (6) and features V, the
407second step of HDFE1 can be quantified as

max
Einter1

ET
inter1½b

Xc

m¼1

Nmðmm � mÞðmm � mÞT

þ ð1� bÞtrðVðDb �WbÞVT Þ�Einter1

s:t: ET
inter1Einter1 ¼ I:

; (10)

409409

410

411We denote Finter1 ¼ b
PC

m¼1 Nmðmm � mÞðmm � mÞT þ
412ð1� bÞtrðVðDb �WbÞVT Þ. Similarly, Finter1 is a real sym-
413metric matrix. In addition, we switch Eq. (10) to a simple
414eigenvalue and eigenvector problem. We form Eq. (10) as
415the Lagrangian function and set @zðEinter;LÞ

@Einter1
¼ 0, we have

416Finter1ei¼�iei. Thus, Eq. (10) can be rewritten as

Einter1¼arg max
ei

Xd
i¼1

eTi Finter1ei ¼arg max
ei

Xd
i¼1

�i: (11)

418418

Fig. 4. An illustration of first minimizing the intra-class structure, and then
maximizing the inter-class structure.

Fig. 5. An illustration of first maximizing the inter-class structure, and
then minimizing the intra-class structure.
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419420 Algorithm 2. Einter1

421 Input: Data set ðxi; yiÞNi¼1, parameters b and k2;
422 Output: Einter1;
423 1: Compute

Pc
m¼1 Nmðmm � mÞðmm � mÞT ;

424 2: ComputeXðDb �WbÞXT ;
425 3: ComputeFinter1, whereFinter1 ¼ b

Pc
m¼1 Nmðmm � mÞðmm �

426 mÞTþ ð1� bÞtrðXðDb �WbÞXT Þ;
427 4: Eigendecompose Finter1, suppose its eigenvalues are �i, i ¼
428 1; . . . ; d, and its corresponding eigenvectors are ei. Assume
429 �1 > ; . . . ; > �i > ; . . . ; > �d;

430 5: Einter1 ¼ ½e1; . . . ; ep�, where p is the number of positive
431 eigenvalues;
432 6: return Einter1.

433 Algorithm 3.HDFE1

434 Input: Data set ðxi; yiÞNi¼1, Eintra1, Einter1;
435 Output: Extractor E;
436 1: Perform Eintra1 based on the input data ðxi; yiÞNi¼1;
437 2: ComputeV, whereV¼ET

intra1X;
438 3: Perform Einter1 based on the input data ðvi; yiÞNi¼1;
439 4: return E, where E¼Eintra1Einter1.

440 Algorithm 4.HDFE2

441 Input: Data set ðxi; yiÞNi¼1, Eintra1, Einter1;
442 Output: Extractor E;
443 1: Perform Einter1 based on the input data ðxi; yiÞNi¼1;
444 2: ComputeV, whereV¼ET

inter1X;
445 3: Perform Eintra1 based on the input data ðvi; yiÞNi¼1;
446 4: return E, where E¼Einter1Eintra1.

447 To optimize Eq. (11), we choose all positive eigenvalues
448 of Finter1. Thus, assuming that the number of positive eigen-
449 values of Finter1 is p, Einter1¼½e1; . . . ; ep�. The process of the
450 second step is given in Algorithm 2.
451 After the two steps of the HDFE1 algorithm, we obtain
452 two extractors Eintra1 and Einter1. The DFs can be extracted
453 by Eintra1 and Einter1 and equals to ET

inter1ðET
intra1XÞ. In addi-

454 tion, the extractor E ¼ Eintra1Einter1. The detailed process of
455 HDFE1 is given in Algorithm 3.
456 For HDFE2, its first step is to maximize bSgb þ ð1� bÞSlb.
457 Based on the results of the first step, the second step is to
458 minimize aSgw þ ð1� aÞSlw. Similar to HDFE1, HDFE2 first
459 computes the extractor Einter1, and then compute Eintra1.
460 Thus, in HDFE2, the extractor E ¼ Einter1Eintra1. The
461 detailed process of HDFE2 is given in Algorithm 4.
462 In addition, the extractor generated by HDFE1 can extract
463 more effective DFs. The reason is that HDFE1 first minimizes
464 the intra-class structure of the data. Thus, samples with the
465 same class label will be aggregated, and linearly inseparable
466 samples may become linearly separable. Then, HDFE1 maxi-
467 mizes the inter-class structure information of data to separate
468 samples of different classes. In contrast, HDFE2 first maxi-
469 mizes the inter-class structure information of the data. Thus,
470 different class labels of samples will push each other, which
471 maymake the distribution of the data is confusing. It would be
472 that the linearly separable samples became linearly insepara-
473 ble. Thus, in the subsequent minimization of the intra-class
474 structure information, the same class label of samples cannot

475be aggregated together. Therefore, the extractor generated by
476HDFE1 can extractmore effective DFs.

4773.3 The Sub-ED Algorithm

478In real-world scenarios, to meet the user’s requirements for
479delay and performance (e.g., recognition accuracy), the edge
480layer consists of three MEC platforms: access-level MEC
481platform, district-level MEC platform, and metro-regional-
482level MEC platform. As shown in Fig. 2. The access-level
483MEC platform is designed to support mMTC applications,
484e.g., augmented reality and smart city. The district-level
485MEC platform is designed to support uRLLC applications,
486e.g., connected cars. The metro-regional-level MEC platform
487is designed to support eMBB applications, e.g., video content
488delivery optimization. Therefore, we should deploy different
489extractors with different capabilities to different MEC plat-
490forms. For the access-level and district-level MEC platforms,
491we should deploy the extractor that extracts a small number
492of DFs to reduce network transmission delay and feature
493matching time. For the metro-regional-level MEC platform,
494we should deploy the extractor that extracts a large number
495of DFs to obtain high recognition accuracy.
496To this end, we propose the Sub-ED algorithm, which
497divides E into two sub-extractors for deployment on the
498three-layer MEC platforms. We take the HDFE1 as an exam-
499ple. As shown in Fig. 6, the black curve indicates the rela-
500tionship between the accuracy and the number of
501eigenvalues in the first step. As shown, in the first step, the
502eigenvectors corresponding to negative eigenvalues are
503advantageous for extracting DFs. The eigenvectors corre-
504sponding to zero eigenvalues are useless for extracting DFs.
505The eigenvectors corresponding to positive eigenvalues are
506detrimental to extracting DFs. When Eintra1 consists of
507eigenvectors corresponding to r negative eigenvalues, the
508first step of HDFE1 can achieve the highest accuracy, e.g.,
50985%. Thus, for the first step, we obtain Eintra1, which con-
510sists of eigenvectors corresponding to all negative eigenval-
511ues of Fintra1.

Fig. 6. An illustration of the relationship between recognition accuracy
and the number of eigenvalues. The eigenvalues have been sorted from
small to large in the first step and sorted from large to small in the second
step. r is the number of negative eigenvalues, r1�r is the number of
zero eigenvalues, and d�r1 is the number of positive eigenvalues of the
first step. p is the number of positive eigenvalues, p3�p is the number of
zero eigenvalues, and r�p3 is the number of negative eigenvalues in
the second step. p1, p2, p, p3, r, r1 and d are positive real numbers.
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512 In Fig. 6, the red curve indicates the relationship between
513 the accuracy and the number of eigenvalues in the second
514 step. Based on the results of the first step, we maximize
515 bSgb þ ð1� bÞSlb. Thus, as shown, the eigenvectors corre-
516 sponding to positive eigenvalues are advantageous for
517 extracting DFs. The eigenvectors corresponding to zero
518 eigenvalues are useless for extracting DFs. The eigenvectors
519 corresponding to negative eigenvalues are detrimental to
520 extracting DFs. When Einter1 consists of eigenvectors corre-
521 sponding to p positive eigenvalues, HDFE1 achieves the
522 highest accuracy, e.g., 95%.
523 In addition, we observe that the accuracy rate increases
524 rapidly at the beginning as the positive eigenvalue
525 increases, and becomes slower later. This is because the
526 eigenvalues are sorted and the absolute value of the eigen-
527 values is larger at the beginning. Thus, we can divide E in
528 terms of the relationship between the recognition accuracy
529 and the number of eigenvalues. As shown in Fig. 6, the red
530 curve increases rapidly when the number of positive eigen-
531 values is between 0 and p2. The red curve increases slowly
532 when the number of positive eigenvalues is between p2 and
533 p. The access-level and district-level MEC platforms support
534 latency-sensitive applications with almost real-time
535 response. To this end, we choose p1 positive eigenvalues as
536 the dimension of E1, i.e., E1¼E½e1; . . . ; ep1�, where p1¼
537 g � p2, g 2 ð0; 1Þ is a positive real number. Lots of experi-
538 mental results show that when g is approximately equal to
539 1/2, the HDFE1 can achieve low network traffic and guar-
540 antee recognition accuracy. Because the metro-regional-
541 level MEC platform can tolerate larger latency, we choose
542 p2 positive eigenvalues as the dimension of the sub-extrac-
543 tor E2, i.e., E2 ¼ E½e1; . . . ; ep2�. Compared with E1 and E2,
544 E achieves the highest accuracy. Thus, we place E on the
545 cloud server to serve high-accuracy applications, such as
546 payment authentication.
547 In the Sub-ED algorithm, we first divide the extractor E
548 into the sub-extractor E1¼E½e1; . . . ; ep1� and sub-extractor
549 E2¼E½e1; . . . ; ep2�. Then, we deploy E1 in the access-level
550 and district-level MEC platforms and deploy E2 in the
551 metro-regional-level MEC platform. In addition, we deploy
552 E in the cloud server. Thus, extractors of different sizes are
553 deployed on different MEC platforms to meet the diverse
554 needs of users in terms of recognition accuracy and
555 response time by extracting different numbers of DFs. In
556 fact, the extractor can be divided into more fine-grained
557 sub-extractors to cope with the different needs of IoT image
558 recognition services.
559 In actual situations, the network conditions are dynami-
560 cally changing, and fine-grained extractors are deployed so
561 that users can select appropriate sub-extractors based on
562 the current network status. For instance, when the current
563 network condition is good and the user’s response time
564 requirements can be met, the user can select a larger sub-
565 extractor to obtain higher recognition accuracy. Otherwise,
566 the user can choose a smaller sub-extractor to get a faster
567 response at the expense of slightly lower accuracy.

568 3.4 Summary

569 The proposed framework not only improves accuracy, but
570 also meets different demands of IoT image recognition

571services. In the framework, HDFE1 can improve the accu-
572racy by extracting effective DFs from the data set on the
573cloud servers and the data on MEC platforms. Extracting
574DFs from the data on MEC platforms can reduce network
575traffic and feature matching time. The Sub-ED algorithm
576can meet the different demands of users by dividing E into
577sub-extractors and deploying them into appropriate MEC
578platforms. This is because by extracting different numbers
579of DFs, network transmission delays and feature matching
580time and accuracy are affected.
581In addition, because numerous IoT devices can use sub-
582extractors to extract DFs from the data on MEC platforms,
583the proposed framework can save network traffic. Assume
584that the pre-processed image data is 100 KB; the extracted
585DFs is 2 KB; the sub-extractor E2 is 2 MB. When there are
58610,000 users requesting the image recognition, the MEC
587platform upload the pre-processed image data to the cloud
588servers with the network traffic of 1,000,000 KB. The total
589network traffic consumption of the cloud server sending the
590sub-extractor E2 to the MEC platform and uploading the
591DFs data to the cloud servers by the MEC platform is 22,048
592KB. The results show that uploading the DFs data can
593reduce network traffic. In addition, sub-extractors E1 and
594E2 are not updated every time. When the new image accu-
595mulates a certain amount of data, we use the new image
596and HDFE1 algorithm to generate a new extractor, then use
597the Sub-ED algorithm to divide the new extractor into two
598sub-extractors and send them to the corresponding MEC
599platforms. We will leave it as our future work. As the num-
600ber of IoT devices requesting image recognition increases,
601the proposed framework saves more network traffic.

6024 EXPERIMENTS

6034.1 Datasets

604Synthetic Data. We generate three classes of uniformly dis-
605tributed samples. The first class samples are numbers
606between intervals [0, 1]. The second class samples are num-
607bers between intervals [0.8, 1.8]. The third class samples are
608numbers between intervals [1.6, 2.6].
609Yale [39]. The Yale data set contains 165 grayscale images
610in GIF format of 15 individuals. There are 11 images per
611subject. The size of each image is resized to 32 � 32 pixels.
612Leaves [40]. The Leaves data set contains 186 images of 3
613species of leaves against cluttered different backgrounds.
614Each image is resized to 32 � 32 pixels.
615USPS [41]. The USPS data set contains 1856 images of 10
616individuals. The size of each image is 16�16 pixels.
617COIL20 [42]. The Columbia Object Image Library (COIL-
61820) contains 1440 images of 20 objects. The objects were
619placed on a motorized turntable against a black back-
620ground. The size of each image is 32 � 32 pixels.
621UMIST [43]. The UMIST data set consists of 564 images
622of 20 individuals, taking into account race, sex and appear-
623ance. Each image is resized to 32 � 32 pixels.
624In addition, we compare the proposed algorithm with
625DAG-DNE [35], JGLDA [36] and WAPL [20] algorithms.
626DAG-DNE algorithm only includes local intra-class and
627inter-class structures. Although JGLDA algorithm includes
628all structures, they are treated equally when generating the
629extractor. WAPL not only includes all structures (i.e., global
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631 class structure), but also introduces trade-off parameters
632 (i.e., a, b and g) to reasonably controls the contribution of
633 each structure. When evaluating the performance of the
634 Sub-ED algorithm, we compare HDFE1 with PCA [7], [8],
635 because PCA is one of the most popular feature extractor
636 generation algorithms and is widely used to extract features
637 of data. PCA aims to find a small number of features from a
638 large number of potentially relevant features that retain as
639 much information as possible.

640 4.2 Performance of Visualization

641 4.2.1 Experimental Setup

642 To evaluate the extracted DFs, we compare the proposed
643 algorithms with the WAPL algorithm, because WAPL
644 should be able to generate the extractor that can extract
645 more effective DFs than those generated by DAG-DNE and
646 JGLDA, as discussed above. In the experiment, parameters
647 a, b, and g in WAPL are 0.7, 0.5, and 0.2, respectively. The
648 parameters a and b in the HDFE1 are 0.9 and 0.2, respec-
649 tively. The parameters a and b in the HDFE2 are 0.9 and 0.8,
650 respectively.

651 4.2.2 Synthetic Data Set Visualization

652 The extractors generated by HDFE1 and HDFE2 can extract
653 more effective DFs from the data set. Fig. 7 shows that the DFs
654 extracted by extractors generated by HDFE1 and HDFE2
655 have the characteristics: if they come from data with the
656 same class label, they are aggregated; otherwise, they are
657 separable. However, the capabilities of the extractors gen-
658 erated by HDFE1 and HDFE2 are more efficient than the
659 capabilities of the extractor generated by WAPL. As shown
660 in Fig. 7. Fig. 7b shows some overlap between DFs of dif-
661 ferent class labels of data. Figs. 7c and 7d show that the
662 DFs of different class labels of data are separate. The rea-
663 son is that WAPL generates the extractor by simulta-
664 neously optimizing the structural information of the data.
665 Although WAPL controls the contribution of each structure
666 through trade-off parameters, these data still interfere with
667 each other. HDFE1 and HDFE2 generate extractors by hier-
668 archically optimizing the structural information of the
669 data, thus avoiding mutual interference between the data,
670 so that the generated extractors can extract more effective
671 DFs.
672 The capability of the extractor generated by HDFE1 is much
673 higher than that of the extractor generated by HDFE2. As illus-
674 trated in Figs. 7c and 7d, DFs from the same class samples
675 are more aggregated. This is because, if the inter-class
676 structure is optimized first, the distribution of the samples

677will become confusing because the samples of different
678classes push each other, and even the linearly separable
679samples become linearly inseparable, making samples
680more difficult to separate. However, if the intra-class struc-
681ture is optimized first, then the same class samples will be
682pulled together and will be aggregated, even the linearly
683inseparable samples will be linearly separable. So, the
684extractor generated by HDFE1 can extract more effective
685DFs.

6864.3 Performance of Recognition Accuracy

6874.3.1 Experimental Setup

688We randomly split each data set into a training setXtr and a
689test set Xte. Xtr is randomly split into a training set Xtr1 and
690a validation set Xte1. We use the training set Xtr1 to tune
691parameters and use the validation set Xte1 to validate them.
692For WAPL, we use the training set Xtr1 to tune a, b, and g.
693When training one parameter, the other two parameters are
694set to 0.5. For HDFE1 and HDFE2, we also use the training
695set Xtr1 to tune a and b and use the validation set Xte1 to
696validate them. k1 and k2 indicate the number of neighbors
697selected when preserving the local intra-class and inter-
698class structures, we shows the results when k1¼k2¼1, k1¼
699k2¼3 and k1¼k2¼5. We compare the proposed HDFE1 and
700HDFE2 algorithms with DAG-DNE, JGLDA and WAPL
701algorithms. When comparing all algorithms, their training
702set and test set are the same.
703Finally, the nearest neighbor classifier [44] is performed
704on the test set Xte. We report the best mean accuracy and
705standard deviation over 30 random splits for each data set.

7064.3.2 Improvement of Recognition Accuracy

707HDFE1 and HDFE2 achieve higher recognition accuracy. Table 1
708shows that HDFE1 and HDFE2 achieve the highest recogni-
709tion accuracy on all data sets. As shown, on Yale data set,
710when k¼1, the recognition accuracy of HDFE1 is 6.44%
711higher than that of WAPL. The reason is that HDFE1 and
712HDFE2 hierarchically explore the structural information of
713the image data, avoiding the interference between image
714data. Although JGLDA incorporates all sub-structures, it
715treats them equally. However, different sub-structures have
716different contributions to generating the extractor. Further-
717more, it optimizes these sub-structures simultaneously and
718makes them interfere with each other. The DAG-DNE can-
719not generate an extractor that extracts effective DFs because
720it incorporates only a subset of these sub-structures (e.g.,
721local intra-class and inter-class sub-structures). Although
722WAPL contains all sub-structures and processes them rea-
723sonably, it cannot generate an extractor for extracting DFs

Fig. 7. Visualization of the two-dimensional discriminative features.

8 IEEE TRANSACTIONS ON CLOUD COMPUTING



IE
EE P

ro
of

724 because it optimizes these sub-structures at the same time,
725 which leads to mutual interference between image data.
726 Therefore, HDFE1 and HDFE2 can generate extractors that
727 can extract more effectively DFs compared with JGLDA,
728 DAG-DNE, and WAPL.
729 The recognition accuracy of HDFE1 is higher than that of
730 HDFE2 in most cases. As shown in Table 1, except on the
731 USPS data set, when k ¼ 5, the recognition accuracy of
732 HDFE2 (i.e., 97.25%) is higher than the recognition accuracy
733 of the HDFE1 (i.e., 96.15%), and the others are HDFE1 with
734 a higher recognition accuracy. This is because that HDFE1
735 first minimizes the intra-class structure, and the same class
736 images will be pulled together, which makes the subsequent
737 different classes of image data easier to separate. However,
738 HDFE2 first maximizes the inter-class structure, and image
739 data of different classes will be pushed away, which can
740 confuse the image data. Therefore, HDFE1 can generate an
741 extractor that can extract more effective DFs and achieves
742 higher recognition accuracy.

7434.4 Performance of the Sub-ED Algorithm

7444.4.1 Experimental Setup

745We use 10% (15), 10% (18), 10% (182), 10% (1280), and 50%
746(284) images of the Yale, Leaves, USPS, COIL20, and UMIST
747data set as test images. Note that the number in the paren-
748theses is the number of test samples. The parameters of a
749and b are turned as in Section 4.3.1. We set k1 ¼ 1 and k2 ¼
7501. In the Yale data set, g ¼ 8=15. In the Leaves data set, g ¼
75110=19. In the USPS data set, g ¼ 16=37. In the COIL20 data
752set, g ¼ 5=11. In the UMIST data set, g ¼ 5=8. Without any
753knowledge, we can set g ¼ 1=2.

7544.4.2 Results

755HDFE1 improves recognition accuracy across all data sets on
756all MEC platforms. As illustrated in Fig. 8, compared with
757PCA, the HDFE1 improves recognition accuracy by
75823.08% on the Yale data set. For the access-level and dis-
759trict-level MEC platform, compared with PCA, the
760HDFE1 improves recognition accuracy by 9.05% on the
761Yale data set. For the metro-regional-level MEC platform,
762compared with PCA, the HDFE1 improves recognition
763accuracy by 11.88% on the COIL20 data set. This is
764because HDFE1 can generate an extractor that extracts
765effective DFs from image data set. However, PCA aims
766to extract features that can preserve the global structural
767information of the image data, rather than DFs that facil-
768itate recognition or classification tasks. Therefore, com-
769pared with PCA, HDFE1 can achieve higher recognition
770accuracy by extracting effectively DFs.
771HDFE1 reduces network traffic and feature matching time
772on all MEC platforms across. As illustrated in Fig. 9, for
773the access-level and district-level MEC platforms, HDFE1
774reduces network traffic by 94.97% on the COIL20 data
775set compared with PCA. Fig. 10 shows that, for the
776access-level and district-level MEC platforms, HDFE1
777reduces feature matching time by 26.83% on the COIL20
778data set compared with PCA. The reason is that HDFE1

TABLE 1
Image Retrieval Accuracy (% � std)

Data Sets k ¼ k1 ¼ k2 Recognition Accuracy (%)

JGLDA DAG-DNE WAPL HDFE1 HDFE2

Yale k=1 72.67�0.57 70.67�0.43 75.56�0.83 82.00�0.22 77.67�0.87
k=3 80.00�0.97 80.00�0.62 82.22�0.47 84.44�0.47 82.67�0.52
k=5 86.67�0.35 77.78�0.45 86.67�0.85 88.89�0.16 88.89�0.53

Leaves k=1 75.83�0.46 75.83�0.89 79.44�0.68 80.28�0.11 80.00�0.77
k=3 77.22�0.72 75.56�0.63 75.83�0.37 78.33�0.39 77,22�0.49
k=5 76.94�0.69 76.67�0.46 77.94�0.59 79.72�0.06 78.33�0.23

USPS k=1 93.96�0.23 95.79�0.54 96.00�0.28 97.80�0.18 97.52�0.42
k=3 93.59�0.30 95.60�0.58 96.00�0.87 97.25�0.36 96.70�0.26
k=5 94.32�0.91 95.97�0.34 95.99�0.45 96.15�0.61 97.25�0.32

COIL20 k=1 84.40�0.50 84.74�0.39 85.67�0.45 88.83�0.41 87.58�0.27
k=3 86.77�0.69 87.45�0.41 88.21�0.73 89.14�0.24 89.14�0.51
k=5 84.24�0.73 85.76�0.58 86.12�0.26 87.11�0.13 86.20�0.37

UMIST k=1 97.22�0.55 97.32�0.26 98.06�0.82 98.63�0.41 98.35�0.63
k=3 98.35�0.78 97.64�0.34 98.25�0.79 98.87�0.33 98.87�0.47
k=5 98.10�0.64 97.87�0.54 98.46�0.55 98.57�0.29 98.56�0.31

Fig. 8. Recognition accuracy of different MEC platforms. HDFE1-A,
HDFE1-D, and HDFE1-M refer to sub-extractors on access-level MEC
platform, district-level MEC platform, and metro-regional-level MEC plat-
form, respectively.
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779 can extract a small number of DFs from the image data.
780 Thus, the corresponding MEC platforms only need to
781 upload a small amount of DFs data to the cloud server.
782 A small amount of DFs data consumes a small amount
783 of network transmission traffic, which also has a short
784 network transmission delay. A small number of DFs also
785 indicates a shorter feature matching time, because there
786 are fewer DFs that need to be matched. Therefore,
787 HDFE1 can reduce network traffic and feature matching
788 time. This also shows to a certain extent that HDFE1 can
789 reduce the response time of image recognition services,
790 because the response time mainly includes network
791 transmission time and feature matching time.
792 The more images that are processed, the more network traf-
793 fic and feature matching time saved. As illustrated in Fig. 9,
794 compared with PCA, HDFE1-A reduces network traffic
795 by 88.88% on the USPS data set. Compared with PCA,
796 HDFE1-A reduces network traffic by 86.35% on the
797 Leaves data set. Fig. 10 shows that HDFE1-A reduces
798 feature matching time by 17.31% compared with PCA on
799 the USPS data set. Compared with PCA, HDFE1-A
800 reduces feature matching time by 15.53% on the Leaves
801 data set. This is because a large number of images are
802 processed by the extractor on the USPS data set. For
803 instance, if one image can save 1 KB, then two images
804 can save 2 KB. Similarly, if one image can save 100 milli-
805 seconds, then two images can save 200 milliseconds.

806Therefore, as the number of images processed by the
807extractor increases, more network transmission traffic
808and feature matching time can be saved.

8095 CONCLUSION

810In this paper, we mainly make the following three contribu-
811tions. First, we propose an IoT services framework to adapt
812the hierarchical MEC environment. Second, we propose the
813HDFE algorithm to generate an extractor to extract DFs
814from the image data set on cloud servers and images on
815MEC platforms. In addition, we analyze two version of
816HDFE: HDFE1 and HDFE2. Third, we propose the Sub-ED
817algorithm to divide the extractor into sub-extractors and
818deploy them on different MEC platforms to meet the
819diverse demands of IoT services. Experimental results show
820that the proposed framework can improve recognition accu-
821racy, reduce network traffic and feature matching time, and
822meet diverse demands of IoT services. In future work, we
823will deploy the proposed framework in the real MEC
824environment.
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