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Abstract—Viewport prediction and prefetch have an impor-
tant influence on VR video streaming performance. This work
proposes a novel federated learning-based viewport prediction
model training algorithm, ComPer-FedAvg. The proposed algo-
rithm leverages a VR video’s common viewing pattern and users’
personal viewing patterns to train the prediction model in a
distributed and privacy-preserving manner. Further, considering
the VR video viewport prediction accuracy, a stochastic game
is formulated to solve the VR streaming network’s communica-
tion resource allocation problem, where limited communication
resource blocks are auctioned to users to achieve the optimal
overall VR viewing experience. For each user, the auction is
decomposed into two disjoint subproblems, namely, the optimal
number of data rate requesting and true value claiming (bid-
ding). The optimal true value claiming has been analytically
proved to be equal to the VR viewing reward with given
data rate. Due to the lack of global information when users
request data rate, we reformulate users’ data rate requesting
problem as a POMDP problem. A novel deep reinforcement
learning algorithm is adopted to solve the problem. Evaluation
and simulation results show the proposed viewport prediction
and VR streaming schemes outperform conventional solutions
in terms of prediction accuracy and VR viewing experience.

Index Terms—Virtual Reality, Personalized Federated Learn-
ing, Deep Reinforcement Learning, Communication Resource
Allocation.

I. INTRODUCTION

With the development of information and communica-
tion theory and technology, many novel applications have
emerged, which promise disruptive changes to people’s lives
and vast markets. Virtual Reality (VR) video streaming is
one of the most promising applications, which provides an
unprecedented virtual and immersive experience for users.
However, numerous technical challenges stemming from the
QoE and efficiency requirements need to be addressed before
its success. More specifically, compared to conventional video
streaming, VR video provides high-resolution 360◦ visual
fields on three Degrees of Freedom (3-DoF). The broader and
higher-definition visual field means more pixels to transmit,
which requires a much higher bandwidth. Besides, as users
move their heads, corresponding viewports need to be pre-
sented to users within an ultra-low latency; otherwise, users
will suffer dizziness and nausea [1].
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Tiling and prefetch are among the most important solutions
to improve VR video streaming efficiency. Compared to
streaming the entire 3-DoF VR video, tiling schemes split the
VR video into discrete tiles in the spatial dimension. VR video
providers only stream tiles currently viewed by users, where
fewer tiles to transmit means lower bandwidth consumption.
The other solution prefetch segments the VR video in the
temporal dimension. If a user’s data rate is sufficient for the
currently viewed segment, it can spare the current data rate
to download future tiles into the local buffer. The prefetch
scheme can reduce the motion response latency and stabilize
the VR streaming performance in the dynamic communication
environment.

Although the tiling and prefetch schemes promise a con-
siderable improvement, their performance depends heavily on
the viewport prediction accuracy. Since prefetch is executed
on the granularity of tile, the prefetched tiles can only be
of improvement when the user finally watches them. If the
prediction accuracy is low, a large proportion of the data
rate will be consumed to download tiles that will not be
viewed, which significantly degrades the system performance.
Meanwhile, state-of-the-art viewport prediction solutions [2]–
[6] usually take advantage of Deep Neural Networks (DNN),
which requires a large amount of data to train the prediction
model. However, due to the rising privacy concern, users
are unwilling to share their viewing history with others for
prediction model training, and VR video providers must
not share their users’ viewing history with others without
permission. The obstacles above limit the data efficiency of
the prediction model training. Moreover, the viewing patterns
among different users and VR videos are different [7], so
the prediction model needs to consider both personal and
common viewing patterns, where limited works have been
done. Besides, under a given prediction performance, how to
tradeoff between communication resource consumption and
video prefetch among multiple VR video viewers remains an
open issue.

Recently, the emerging Mobile Edge Computing (MEC)
[8], Federated Learning (FL) [9], and Deep Reinforcement
Learning (DRL) [10] bring new promise to solve the chal-
lenges above. The MEC scheme provides caching, computing,
and communication service to users in an integrated man-
ner, enabling upper-layer applications to sense underlying
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resource information and achieve cross-layer optimization.
Meanwhile, FL can achieve cross-data-owner model train-
ing without exposing their personal data, which provides a
privacy-preserving scheme to train the model cooperatively.
DRL can learn to solve long-term dynamic problems in a
model-free manner, and it scales well for the problem with
the curse of dimension, whose improvement has been widely
validated [10]–[12].

In this work, inspired by recent efforts, we propose an
MEC-enabled VR streaming system, where VR video view-
port prediction and communication resource allocation are
integrated to achieve efficient VR streaming. Considering the
video-common and user-personalized viewing patterns, we
propose a novel Common-Personalized Federated Averaging
(ComPer-FedAvg) algorithm to learn the VR video viewing
pattern in a distributed and privacy-preserving fashion. Mean-
while, to maximize the overall VR video watching experience,
we adopt the Vickrey–Clarke–Groves (VCG) [12] auction to
decide the communication resource block allocation. Further,
we formulate the communication resource allocation problem
into a stochastic game, where users consider their prefetch
buffer and channel state information to request communica-
tion data rate. Due to the lack of global state information
in the resource competition process, we reformulate the
problem into a Partially Observable Markov Decision Process
(POMDP) for each user. Finally, to solve the problem, we
adopt a DRL algorithm to learn the system model and make
decisions in the dynamic environment. The contributions of
this work are summarized as follows.

• We propose an MEC-enabled VR streaming system,
where VR viewport prediction and communication re-
source allocation are integrated to achieve efficient VR
streaming.

• We propose ComPer-FedAvg, a novel FL-based pre-
diction model training algorithm. In a distributed and
privacy-preserving manner, ComPer-FedAvg can utilize
the viewing history in both users’ devices and centralized
VR video providers to train each user’s personalized
prediction model for each VR video.

• We formulate the multi-user buffer-aware VR video
streaming problem as a stochastic game, where users
bid for communication data rate to maximize their VR
video viewing utility. Considering the lack of global
state information in the resource competition process, the
problem is further reformulated into a POMDP problem
for each VR user.

• We leverage a DRL algorithm to solve the formulated re-
source block allocation problem in a distributed manner.
Evaluation results on real data traces validate the im-
provement of the proposed prediction training algorithm
and VR video streaming performance.

The rest of the work is organized as follows. In section II,
we present related works on VR video viewport prediction
and VR video streaming. In section III, we present the system
model of the proposed VR video streaming system. We
describe the proposed ComPer-FedAvg algorithm in section
IV. Then in section V, we formulate the VR video streaming

problem into a stochastic game and reformulate it into a
POMDP problem. To solve the formulated problem, we de-
compose the original problem and present the DRL algorithm
in section VI. Evaluations and discussions are conducted in
section VII. In section VIII, we conclude the work.

II. RELATED WORKS

In this section, we present related works on VR viewport
prediction and VR video streaming.

A. VR Video Viewport Prediction

The efforts to predict viewport can be classified into two
categories, namely, the single user based prediction and
multiple users based prediction.

The single user based prediction efforts focus on the insight
of a single viewer’s viewing pattern to make predictions.
In [13], the author conducted linear regression on users’
viewing history, and they predicted future viewports based
on current viewing behavior. Also, considering the decreasing
accuracy of prediction as the prediction windows increases,
they accumulated the prediction results as the final prediction
output. There are also efforts that concentrated on the content
of the VR video to make predictions. In [2], the author
proposed to extract visual features of the viewport from dif-
ferent dimensions, based on which saliency map is predicted
with a Convolutional Neural Network (CNN). Then with the
information of the predicted saliency map, the authors pre-
dicted the viewport based on the proposed concept of visual
equilibrium and uncertainty. Meanwhile, the authors of [3]
proposed to track the moving and static objects in the user’s
viewport and transit tiles containing the currently watched
objects; besides, they adjusted the tile transmission decision
according to the performance of tracking and transmission
accuracy. A similar idea to object tracking is the viewport
tracking filter proposed in [4], where the authors adapted an
object tracking algorithm to a viewport tracking filter, and
they balanced between the tracking system and a Recurrent
Neural Network (RNN) to output the final prediction results.
Also considering predicting a series of viewports in the future,
the author of [5] extracted all features of VR content that has
not been viewed, and input the extracted features as well as
head movement to the Long Short Term Memory (LSTM)
network for a series of viewports prediction in the future.

The multiple users based prediction efforts focus on ex-
ploiting the common feature among different users. In [14],
the author conducted linear regression on history head move-
ment, and when predicting a new viewport based on the
trained model, the author adjusted the results with K-Nearest-
Neighbor users’ viewport to correct the prediction bias. A
similar idea was also presented in [7], where the prediction
was conducted on the horizontal and vertical axis, and the
final output is a weighted sum of the user’s prediction and
other users’ prediction. Clustering is another approach to
integrate the viewing patterns of different users. In [15]
and [16], the authors clustered the viewers into different
clusters according to their viewing habit, and they calculated
a common viewing pattern for a cluster and hence made
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predictions for users in the corresponding cluster. In [6],
the authors adopted transfer learning for the saliency map
prediction, which shared the prediction model among different
users. Then the predicted saliency map together with the
current head orientation was input to the LSTM for the next
viewport prediction.

Remark: As can be seen, the trend for viewport prediction
is to incorporate both VR content features and head move-
ment. Meanwhile, the utilization of multiple users’ knowledge
and experience can enhance the resilience and accuracy of the
single user based prediction approaches. However, as can be
seen, the privacy-preserving prediction cooperation has been
largely neglected.

B. VR Video Streaming

The efforts to improve VR video delivery can be classified
into two categories, i.e., flexible video delivery and infras-
tructure assistance.

For flexible video delivery, the authors of [17] proposed
to split the visual fields into tiles and only transmit the
tiles within users’ visual fields. In [18], the authors further
improved the flexibility. Compared to only deliver currently
viewed visual fields, they reconstructed the spherical visual
fields and streamed the viewed visual fields in priority.
Another solution [19] utilized the knowledge of ROI, where
they streamed the ROI regions of the video with high quality
while compromising the quality of rest regions. In [?], the
authors further proposed a series of new factors to consider
when evaluating the VR video quality, such as head movement
speed, brightness, contrast, and depth variation. Based on
the new concerns, the author introduced adaptive tiling and
quality to improve the real-time streaming performance.

For infrastructure assistance, the authors of [1] proposed
to integrate mmWave and MEC to achieve low-latency VR
video delivery. They pre-computed the frames that users
might request, cache the computing result locally, and send
the results to users via mmWave communication channels.
The authors of [20] considered the VR video tracking ac-
curacy and video processing and transmitting latency, and
they optimized VR video delivery under the cooperation
of multiple small base stations. In [21], the authors further
considered the correlation between different users’ viewing
videos, and they utilized the information to decide uplink and
downlink resource allocation. In [11], the authors made use of
a federated learning approach to learn the gesture of users, and
thus retrieve the wireless channel blockage predictions. Based
on the predicted results, the authors optimized mmWave
base station association and achieved the minimal break of
presence. In [22], the authors considered ROI and field of
view of VR videos, predicted the viewing orientation of users,
and cached low-resolution video at every node. Integrating
the knowledge above, the authors streamed VR video with
multicast. Compared to offload tasks to MEC servers, the
authors of [23] proposed to offload the VR rendering tasks
from MEC nodes to users and achieve minimal bandwidth re-
quirement. The author of [24] considered the projection of VR
videos, and they formulated the projection version caching

VR Video Viewers

MEC-Enabled Base Station

VR CP 1 

Storage & Learning

...

VR CP M

Storage & Learning

Fig. 1: Overall system architecture.

and computing offloading into a multiple-choice multiple
dimensional knapsack problem. Besides cellular connections,
the authors of [25] further integrated Wi-Fi into consideration,
where they divided the VR video into low-quality base layers
and high-quality enhancement layers. They delivered encoded
base layers to users and decoded enhancement layers to users
for ultra-low latency VR video delivery.

Remark: The progress of MEC has enabled cross-layer
optimization, which incorporates the underlying caching,
computing, and communication resources to enhance the
VR streaming performance. However, although the excellent
efforts have been made above, it has been largely neglected
that the VR video prefetch influences the viewing experience,
which is related to the prediction accuracy. Further, in the
process of underlying resource allocation, prefetch based
buffer conditions should be considered for higher efficiency
and better service quality.

III. SYSTEM DESIGN AND MODEL

In this section, we present the overall system design and
the model on viewport prediction, VR video watching, and
wireless communication resource allocation.

A. System Design

The overall system architecture is presented in Fig. 1.
As is shown in the figure, there are N users connecting to
the MEC-enabled base station, and there are C pieces VR
videos provided by M VR video content providers (CPs). The
VR videos are organized in spatial and temporal dimensions
as in Fig. 2. More specifically, VR videos are streamed to
users as segments, each containing T seconds of video to
be watched. Meanwhile, for each segment, VR videos are
split into tiles for flexible transmission and data rate saving.
Denote Vt ∈ {0, 1}N×C×L as all users’ viewport in the t-
th segment, where L is the total number of tiles for each
segment, and Vtikl = 1 means the tile l of VR video k is
watched by the user i at the t-th segment. Moreover, VR
videos are encoded into high and low-quality versions. VR
video users can download high or low-quality tiles according
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to their hardware profiles, such as computing power and
available data rate. Without losing generality, we define the
bitrate of different tiles as the same value, and the bitrate of
a single high and low-quality tile is denoted as sH and sL,
respectively.

Users watch the video in temporally sequential order. When
watching a segment, users predict the tiles to be watched in
the next segment according to a prediction model trained in
advance. If they have spare data rate, they can also prefetch
tiles in the next segment as they watch the current segment.

B. Prediction Model Training Model

The prediction model predicts each VR users’ next view-
port based on the current viewing state. More specifically,
each user adopts the training model to predict tiles viewed
during the t+1-th segment based on the tiles viewed in the t-
th segment. In the following, we present the model of training
the personalized prediction model. Note that, in this work, we
focus on the personalized model training algorithm rather than
the specific prediction algorithm; therefore, we take tile-based
prediction as an example.

The prediction model is trained based on users’ viewing
history. Due to the privacy concern, each user maintains
their own unique viewing history data set denoted by Du

i =
∪16k6CDu

ik, where Du
ik is the user i’s viewing history on VR

video k. Meanwhile, Du
ik is organized as Du

ik = {Vtik|t =
1, 2, 3, · · · }, where Vtik = [Vtik1, Vtik2, · · · , VtikL]. Apart
from viewing history maintained by users, CPs can also
collect users’ viewing history on a specific video they pro-
vide. The viewing history maintained by CPs is denoted as
Dc
jk = {Vtikl|t > 1, 1 6 i 6 N, 1 6 l 6 L}, which

represents the CP j’s collected viewing history on video k.
Based on the user and CP-maintained data set, prediction

models are trained for users to predict the next viewport.
Considering the distributed data set and different user viewing
patterns, the prediction model training algorithm adopts a
personalized federated learning-based framework [26]. In the
personalized learning-based framework, there is a centralized
learning node and a number of distributed learning nodes.
All learning nodes maintain the same prediction model archi-
tecture but with different weight parameters ω. The central
node steers the personalized federated learning process, and

its weight is denoted as the common weight ωck. The central
node updates ωck based on the distributed data set Du and Dc.
Before users start to view the VR video k, they download
the prediction model ωck from the central learning node,
and for model personalization, they update ωck to get their
personalized ωuik based on their own local data set Du

ik as
in [26], [27]. Due to limited computing capacity equipped
in user devices, the prediction model is updated by several
mini-batch gradient descent [28] on the local data set.

More specifically, the VR video users are the distributed
learning nodes. A user i maintains a consistent neural network
Nik with personalized ωuik for a VR video k. Given a group
of consecutive input viewports [V(t−n)ik, · · · ,V(t−1)ik,Vtik],
where n+1 is the prediction windows size, the neural network
generates an estimation for the next viewport V̂ (t+1)ik =
Nik(ωik; [V(t−n)ik, · · · ,V(t−1)ik,Vtik]). For simplicity, in
the following, we abbreviate [V(t−n)ik, · · · ,V(t−1)ik,Vtik]
into Vtik, and the prediction window is adjustable for different
scenarios. The error for this prediction can be represented by
ei(ωik;Vtik,V(t+1)ik), where ei(·) : RL → R is the user i
specified error measurement for supervised learning. Then the
loss function li(·) for the user i’s prediction model Nik can
be defined as (1), where pi denotes the viewport distribution
pattern of user i. Further, personalized ωuik can be derived
by (2), where αp is the update step size of the mini-batch
gradient descent.

li(ωik) := E(Vtik,V(t+1)ik)∼piei(ωik;Vtik,V(t+1)ik) (1)

ωuik = ωck − αp∇li(ωck) (2)

Meanwhile, the CP that resides in the MEC server is the
central learning node, and it sets the training objective and
collects updates from distributed learning nodes. Denote by
L(ωck) the overall loss at the central node, then the training
objective is to find the optimal common weight ωck

? that
minimizes the central loss L(ωck) as is shown in (3)

ωck
? = arg min

ωck

L(ωck) (3)

C. VR Video Watching Model

When watching the t-th segment of a VR video, users can
prefetch tiles of the t+ 1-th segment. Also, when the user i
begins to watch the t-th segment, it has a set of prefetched
tiles stored in the local buffer, denoted as BH

tik ∈ {0, 1}L.
BHtikl = 1 means the high-quality version of the tile l has been
prefetched when the user i starts to watch the t-th segment
of the VR video k. When all the tiles viewed in the t-th
segment have been prefetched, i.e., BH

tik � Vtik, the user can
directly watch the segment and obtain a satisfying experience.
Otherwise, the user needs to download the missing tiles. The
downloading decision is denoted as X tik ∈ {0, 1}L, and
Xtikl = 1 means the user downloads the high-quality version
of the tile l for the current segment. For the remaining missing
tiles, the user downloads the low-quality version to make up a
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TABLE I: Notations and Definitions
Notations Definitions

T The length of the VR video segment.

Vt Users’ viewport for the t-th segment.

N Number of end users.

C Number of available VR videos.

M Number of CPs.

L Number of tiles in the complete 3-DoF horizon.

sH , sL The bitrate of a high/low quality tile.

Du, Dc Viewing history data set of users and CPs.

Nik User i’s prediction model for VR video k.

ωu
ik , ωc

k

ωu
ik is the weight for the user i’s personalized

prediction model on VR video k. ωc
k is the common

weight for the prediction model in the central node.

pi The viewport distribution pattern of user i.

bptji
The data rate user i can achieve over the resource
block j.

bti
User i’s available data rate when start watching the
t-th segment.

ΦH
tik , ΦL

tik
The upper and lower data rate bounds that affect
users’ viewing experience.

BH
tik , BL

tik
User i’s prefetched high and low-quality tiles for the
t-th segment of VR video k.

X tik
User i’s tile downloading decision for the t-th seg-
ment of VR video k.

rtik
Instantaneous reward for user i watching the t-th
segment of video k.

S The number of resource blocks at the base station.

ξti
The number of resource blocks the user i requests at
the t-th scheduling slot.

v̂ti, vti
The claimed and real true value of the user i at the
t-th scheduling slot.

ψt
The resource block auction winner decision at the
t-th scheduling slot.

φt
The resource block allocation at the t-th scheduling
slot.

σti
The payment the user i needs to make in the t-th
scheduling slot.

αp, αt The step size for the personalization and ComPer-
FedAvg local update, respectively.

ιu, ιc
The weight balancing the trained model’s preference
over users’ personal viewing pattern and the VR
video’s common viewing pattern.

Du
i , Du′

i , Du′′
i

Mini-batches of data samples from user i’s viewing
history.

Dc
jk

Mini-batches of data samples of VR video k’s view-
ing history stored in CP j.

St, Sti
The global state of the user in the VR streaming
system.

π, πi, π−i

St is the joint control policy of all users, πi is the
control policy of user i, and π−i is the joint control
policy of users expect i.

At, Ati
The action of all users and user i at the t-th schedul-
ing slot.

Uti
The utility user i achieves on given state and action
at the t-th scheduling slot.

V(·) State value function of a given state and policy.

Q(·) Action value function of a given state and action.

Oti User i’s observation at the t-th scheduling slot.

Mi The experience memory of the user i.

L(·), LD3RQN (·)
L(·) is the loss functions of ComPer-FedAvg algo-
rithm, and LD3RQN (·) is the loss function of the
D3RQN algorithm.
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Fig. 3: VR video prefetch sequence.

complete viewport. Note that, as defined in (4) and (5), there
is an upper data rate bound ΦHtik and a lower data rate bound
ΦLtik that can affect the user’s decision. In (4) and (5), ◦ is
the Hadamard product operator.

ΦHtik = ||Vtik − (Vtik ◦BH
tik)||1 · sH (4)

ΦLtik = ||(Vtik − Vtik ◦BH
tik)−

(Vtik − Vtik ◦BH
tik) ◦BL

tik||1 · sL
(5)

If the user i’s available data rate is higher than the upper
bound ΦHtik, i.e., the sum bitrate of high-quality missing tiles
in the viewport, then the user can watch the high-quality
VR video smoothly without stall. Meanwhile, if the user i’s
available data rate is lower than the lower bound ΦLtik, i.e., the
sum bitrate of low-quality missing tiles, then the user cannot
see a complete scene. When the user’s available data rate is
between ΦLtik and ΦHtik, it downloads a proportion of tiles in
high quality, and the remaining is downloaded as low-quality
ones. The objective of selecting high or low-quality tiles to
download is to maximize the user’s instantaneous VR video
viewing reward as defined in (6).

rtik =


1, bti > ΦHtik
||BHtik◦Vtik+(Vtik−Vtik◦BHtik)◦X tik||1

||Vtik||1 , ΦLtik 6 bti 6 ΦHtik
−1, bti 6 ΦLtik

(6)
When the user can watch the current segment smoothly, it

allocates the remaining data rate to prefetch the predicted tiles
in the next segment. The prefetch rule is to first download
the central tile in the predicted viewport and then proceed
to the remaining tiles in clockwise order as shown in Fig.
3. The prefetch logic is consistent with that in [29], where
the prefetch starts from the center of the predicted viewport,
and an enlarged prefetch region promises a higher probability
of overlapping with the actual viewport1. Since the prediction
is not necessarily accurate, after downloading all high-quality
tiles in the predicted viewport, the user proceeds to download
tiles in the predicted viewport’s outer rim.

1Other prefetch rules can also be supported, which does not influence the
superiority of the proposed solution
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D. VCG Auction-based Communication Model

The users are connected to the base station, and we as-
sume Orthogonal Frequency Division Multiplexing (OFDM)
is adopted. The base station has S resource blocks to allocate
to users, and each resource block is a group of sub-carriers
with an overall bandwidth of B.

At the t-th scheduling slot, a resource block j promises a
data rate bptji available to user i, which is shown as

bptji = B log2(1 +
Pgtjid

−β
ti

ν2
) (9)

where Pgtid
−β
ti

ν2 is the Signal-to-Noise Ratio (SNR), P is
the power of the base station, gtji is the Rayleigh fading
parameter of the resource block j for user i, dti is the
distance from the base station to the user i, and β is the path
loss exponent. In this work, we assume the communication
channel model is first-order Markovian as in [30].

With Channel State Information (CSI) known, each user i
submits an auction bid (ξti, v̂ti) to the base station, where ξti
is the data rate the user i is requesting, and v̂ti is the user i’s
claimed true value over ξti. “True value” is a term in auction
theory, and it is denoted as vti for each user in each scheduling
slot. In this work, a user’s true value is defined as the
instantaneous VR video watching reward as vti = rtik. After
receiving the bid from all users, the base station decides the
auction winner based on the Vickrey–Clarke–Groves (VCG)
auction mechanism, whose following manner makes it ideal
for communication resource allocation.

• Efficiency - When all users announce their real true
values, the overall true value is maximized by efficient
communication resource allocation.

• Individual Rationality - Each user can expect a non-
negative payoff v̂ti − σti at any scheduling slot t.

• Truthfulness - No user can improve its payoff by bidding
differently from its true value, which implies that the
optimal bid at any scheduling slot is v̂ti = vti.

In VCG, the base station determines the auction winner
to maximize the overall claimed true value. We denote by
ψt ∈ {0, 1}N the auction winner determination and φt ∈
{0, 1}S×N the resource block allocation, where ψti = 1
means the user i wins resource blocks to support the data
rate it requests, and φtji = 1 means the resource block j
is allocated to the user i. The winner determination can be
derived as (10).

max
φt

N∑
i=1

ψti · v̂ti

s.t. ψti =

{
1,
∑S
j=1 φtjib

p
tji > ξti

0,
∑S
j=1 φtjib

p
tji < ξti

N∑
i=1

φtji 6 1

φtji ∈ {0, 1}

(10)

Note that the allocated resource blocks in (10) might be
fewer than the total available resource blocks, while the
remaining resource blocks are insufficient for any losing user.
In order to preserve the efficiency of the VCG mechanism, the
remaining resource blocks cannot be allocated to losing users;
otherwise, users may try to lose the VCG auction and utilize
the freely allocated resources. As for the remaining resource
blocks, they can be scheduled to serve other applications.
Moreover, since the remaining resources are insufficient for
any single losing user’s requested data rate, this inefficiency
can be neglected as the total communication resources in-
crease.

With the communication resource block allocation and
winner determination, the user i’s available data rate can be
given by (11).

bti = ψtiξti (11)

Moreover, in the VCG auction, the user who obtains
requested resource blocks needs to make a payment σti to
the base station, and the payment is calculated as

σti = max
ψ−i

N∑
i′=1,i′ 6=i

ψti′ · v̂ti′ −max
ψ

N∑
i′=1,i′ 6=i

ψti′ · v̂ti′ (12)

where ψ−i is the VCG winner determination when user i
does not participate in the auction, and ψ is VCG winner
determination when user i participates in the auction. In short,
the payment made by user i is the true value loss it causes
to other users.

With the VCG auction, the communication resource block
allocation can achieve the following properties.

IV. COMPER-FEDAVG FOR VIEWPORT PREDICTION
MODEL TRAINING

This section introduces the design principle and detail of
the prediction model training algorithm, i.e., the ComPer-
FedAvg algorithm.

min
ωck
L(ωck) := min

ωck

(
ιu

N

N∑
i=1

li(ω
c
k − αp∇li(ωck)) +

ιc

N

N∑
i=1

ljk(ωck − αp∇li(ωck))

)
(7)

∇Li(ωck) =

(
I − αp∇2li(ω

c
k)

)(
ιu∇li(ωck − αp∇li(ωck)) + ιc∇ljk(ωck − αp∇li(ωck))

)
(8)
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A. ComPer-FedAvg Learning Objective

When different users watch different VR videos, two
features can be leveraged to help predict viewports: the
user’s personal viewing pattern and the video’s common
viewing pattern. The personal viewing pattern reflects the
user’s preferred head movement over a given viewport. The
video’s common viewing pattern reflects the video’s viewing
feature shared among all its viewers.

User i’s personal viewing pattern can be learned from its
historical viewing history Du

i , and the VR video k’s common
viewing pattern can be learned from the VR video k’s viewing
histories Dc

jk stored in the CP j.
When training the personalized prediction model, the cen-

tral training node balances between users’ personal viewing
pattern and the VR video’s common viewing pattern, which is
denoted as in (7). In (7), ωck−αp∇li(ωck) as in (2) is the per-
sonalized weight at each user. ιu

N

∑N
i=1 li(ω

c
k − αp∇li(ωck))

is the personalized model’s average loss on every user’s data
set, which characterizes how the federally learned model
caters to each user’s personal viewing pattern. Meanwhile,
ιc

N

∑N
i=1 ljk(ωck − αp∇li(ωck)) is the personalized model’s

loss on the VR video k’s existing viewing history, which
characterizes how the model caters to the VR video k’s
viewing pattern. Besides, ιu and ιc is the weight parameter
that balances the model’s preference over users’ personal and
VR video’s common viewing pattern.

B. ComPer-FedAvg Algorithm

Inspired by the Federated Meta-Learning [27] and Person-
alized Federated Learning (Per-FedAvg) [26] solutions, we
propose the ComPer-FedAvg algorithm to solve the problem
(7).

In (7), L(ωck) can be written as the average of meta-
function L1,L2, · · · ,LN , where Li is associated with the user
i as in (13).

Li(ωck) = ιuli(ω
c
k − αp∇li(ωck)) + ιcljk(ωck − αp∇li(ωck))

(13)
Then to solve problem (7), the first step is to compute the

gradient of meta-functions ∇Li, which is given by (8).
The important task in (8) is to compute the gradient

∇li(ωck) and the Hessian ∇2li(ω
c
k), which is computation

costly. Hence, we take a batch of data Du
i ∈ Du

i with respect
to the distribution pi to obtain an unbiased estimate of the
gradient ∇̃li(ωck,Du

i ) as given by (14).

∇̃li(ωck,Du
i ) :=

1

|Du
i |

∑
(Vtik,V(t+1)ik)∈Du

i

∇ei(ωck;Vtik,V(t+1)ik)

(14)

Computing the Hessian ∇2li(ω
c
k) requires a much higher

computation cost. Therefore, extending the result and proof
in [31], the Hessian ∇2li(ω

c
k) · ∇li(ωck − αp∇li(ωck)) and

∇2li(ω
c
k)·∇ljk(ωck−αp∇li(ωck)) in (8) can be approximated

as in (15) and (16), where Du
i , Du′

i ,D
u′′
i are different mini-

batches from user i’s personal viewing history, and Dc
jk ∈

Dc
jk is a mini-batch from the CP j’s history on VR video k.

Algorithm 1 The proposed ComPer-FedAvg algorithm.
Input: Initial iterate ωck(0), fraction ζ of active users partic-

ipating in the training process.
1: for Iteration number κ1: 1 to K1 do
2: The central node chooses a subset of users Fκ1 uni-

formly at random with size ζN .
3: The central node sends ωck(κ1) to all users in Fκ1 .
4: for all i ∈ Fκ1 do
5: Set ωuik(κ1,0) = ωck.
6: for κ2: 0 to K2 do
7: Compute the mini-batch gradient descent

∇̃li(ωuik(κ1,κ2−1),D
u
i(κ2)) using dataset Du

i(κ2).
8: Set ω̃uik(κ1,κ2) = ωuik(κ1,κ2−1) −

αp∇̃li(ωuik(κ1,κ2−1),D
u
i(κ2)).

9: Send ω̃uik(κ1,κ2) to the central node, the central
node calculates ∇̃ljk(ω̃uik(κ1,κ2),D

c
jk(κ1,κ2)), and

sends it back to user i.
10: Set ωuik(κ1,κ2) as in (17) with the approximation

in (15) and (16).
11: end for
12: User i sends ωuik(κ1,K2) to the central node.
13: end for
14: The central node updates its model by averaging over

received models ωcjk(κ1) = 1
Nζ

∑
i∈Fk

ωuik(κ1,K2).
15: end for

With the approximated gradient and Hessian calculated,
we present the procedure of the proposed ComPer-FedAvg
algorithm in Algorithm 1. The algorithm proceeds in an
iterative manner. For the central node, in step 1 to 3, it
initiates a central weight ωk(0)c , selects a random subset
of users to participate in the ComPer-FedAvg process, and
sends the central weight ωk(κ1)c to the participating users.
Then for each participating user, they initiate their local
weights ωuik as the central weight in step 5, and they carry
out K2 steps of local mini-batch gradient descent in step
6 to 11. More specifically, in step 7, the user i’s gradient
descent on ωuik is estimated with ∇̃li(ωuik(κ1,κ2−1),D

u
i(κ2)).

In step 8, ω̃uik denotes the locally personalized weight ωuik,
i.e., the local training version of ωck − αp∇li(ωck) in (2).
In step 9, the user sends ω̃uik to the central node. With ω̃uik
received, the central node computes the estimated gradient
∇̃li(ωuik(κ1,κ2−1),D

u
i(κ2)) and returns it to the user. In step

10, the local training weight is updated by the mini-batch
gradient descent as in (8) with the approximation described
in (15) and (16). After the local iteration terminates, users
send their local weights to the central node in step 12, and
the central node averages over of the received weights in step
14.

V. VR VIDEO STREAMING PROBLEM FORMULATION

In this section, we formulate the communication resource
block allocation problem among the users across the time
horizon as a stochastic game. Then we discuss the best-
response solution from a game-theoretic perspective.
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∇2li(ω
c
k) · ∇li(ωck − αp∇li(ωck)) ≈

∇̃li
(
ωck + δ∇̃li

(
ωck − αp∇̃li(ωck,Du

i ),Du′
i

)
,Du′′

i

)
− ∇̃li

(
ωck − δ∇̃li

(
ωck − αp∇̃li(ωck,Du

i ),Du′
i

)
,Du′′

i

)
2δ

(15)

∇2li(ω
c
k) · ∇ljk(ωck − αp∇li(ωck)) ≈

∇̃li
(
ωck + δ∇̃ljk

(
ωck − αp∇̃li(ωck,Du

i ),Dc
jk

)
,Du′′

i

)
− ∇̃li

(
ωck − δ∇̃ljk

(
ωck − αp∇̃li(ωck,Du

i ),Dc
jk

)
,Du′′

i

)
2δ

(16)

ωuik(κ1,κ2) = ωuik(κ1,κ2−1)−α
t

(
I−αp∇̃2li(ω

u
ik(κ1,κ2−1),D

u′
i(κ2))

)(
ιu∇̃li(ω̃uik(κ1,κ2),D

u′′
i(κ2))+ι

c∇̃ljk(ω̃uik(κ1,κ2),D
c
jk(κ1,κ2))

)
(17)

A. Stochastic Game Formulation

Due to limited resource blocks and the stochastic nature
in the networking environment and user viewport prediction,
we formulate the communication resource allocation problem
into a stochastic game among VR video users. VR video
users are competitive players competing for communication
resource blocks.

Denote the overall state space at the t-th scheduling slot as
St = [St1,St2, · · · ,StN ], where Sti is the local state of the
user i at the t-th scheduling slot. More specifically, the state
space of the user i consists of the information on the buffered
tiles for the current viewport, and the data rate it can achieve
on each resource block, as is defined in (18).

Sti = [BH
tik,B

L
tik, b

p
t1i, · · · , b

p
tSi] (18)

Meanwhile, the joint control policies of users are denoted
as π = [π1, π2, · · · , πN ], where πi, is the user i’s control
strategy. For the individual user, as is shown in (19), its
strategy is a probability distribution over the actions Ati it
can take, which is dependent on the state it observes. In (19),
P(·) is the probability of an event. As for each action Ati,
it is to decide the data rate the user should request and how
much it should claim as its true value for the requested data
rate, as defined in (20).

P(Ati) = πi(Sti) (19)

Ati = (ξti, v̂ti) (20)

At the beginning of each scheduling slot, each player
observes the overall state St, takes its action Ati according to
πi(St), and receives an immediate utility Uti. According to
the VCG mechanism, the user needs to pay for the resources
it achieves as in (12). Therefore, the immediate utility is
composed of the reward the user achieves from viewing the
VR video (6) and the payment it makes for the requested data
rate, which is shown in (21).

Uti(St,Ati,At(−i)) = rtik − σti (21)

With the assumption on the random communication chan-
nel quality and the prediction accuracy, the stochastic game’s
state transition can be represented as (22).

P(St+1|St,π) =
N∏
i=1

P
(

[BH
(t+1)ik,B

L
(t+1)ik]

∣∣∣∣[BH
tik,B

L
(t+1)ik],π

)
·

S∏
j=1

P
(
bp(t+1)ji

∣∣∣∣bptji)
(22)

Intuitively, the user’s goal is to maximize their overall
utility by taking actions Ati, t = 1, 2, · · · as in (23). However,
to achieve the optimal overall utility, users need to know the
exact state information during the whole watching period,
which is not available for them when deciding the communi-
cation resource bidding. Therefore, when making decisions at
each scheduling slot, the users’ objective is to maximize their
expected long-term utility Vi(St,π) as shown in (24). In (24),
Uti(St, πi, π−i) is the utility the user i can achieve when it
plays the strategy πi and other users play their strategy π−i.
Meanwhile, γ is the discounting factor reflecting the user’s
preference over immediate and future utility, which indicates
that the further the utility is, the less important it is for the
current decision.

max
Ati

∑
t=1,2,···

Uti(St,Ati,At(−i)) (23)

Vi(St,π) = Eπ

[ ∞∑
t=1

γ(t−1)Uti(St, πi, π−i)
]

(24)

The long-term utility can also be termed as the state value
function, and the aim of each user in the stochastic game is
to find a strategy π?i that maximizes their state value function
in each step, which can be formally formulated as

π?i = arg max
πi

Vi(S, πi, π−i),∀S, π−i (25)
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A Nash equilibrium (NE) can describe users’ rational
behavior in the formulated stochastic game.

Definition 1: In the formulated stochastic game, an NE is
a condition where each user has a best response strategy π?i
when all other players play their best response π?−i strategy.

Note that, for the N -player stochastic game with expected
infinite-horizon discounted payoffs, there always exists an
NE in stationary control strategies [32]. Therefore, as can be
easily observed from (24), there is an NE for the formulated
stochastic game.

B. Best Response of the Stochastic Game

Supposing in the stochastic game, the user has a perfect
information on the global network state transition probability,
and all users play the NE strategy π?, then the optimal state
value function V?i (St) can be derived by (26).

V?i (St) = max
πi

{
Uti(St, πi, π?−i)+

γ
∑
St+1

P(St+1|St, πi, π?−i) · V?i (St+1)

} (26)

Meanwhile, the NE strategy for each user can be expressed
as π?i = arg maxπi Vi(S). However, since the priori state
transition probability is unknown to users, it is challenging to
directly derive the optimal strategy.

C. POMDP Reformulation

Besides the lack of system dynamics, in the competitive
communication resource auction, users have no incentive to
share their private information with others. Therefore, each
user can only observe their local state and take actions
accordingly. However, as shown in (21), the utility is de-
cided by both the overall state and action. The inconsistency
between the global state and local observation makes the
problem a POMDP problem, which can be denoted by
(S,A,P,U ,O,Ω). S, A, P , and U are the global state,
actions, state transition probability, and utility in the stochastic
game. O is the observation space, where Oti is the user i’s
observation at the t-th scheduling slot. The observation is
generated from the global state according to the rule Ω, i.e.,
Oti = Ω(St). In this work, the observation is the same as
the user’s local state, which is expressed as Oti = Sti.

In the reformulated POMDP, users’ objective is to find
a policy π̂?i that maximizes their observation based value
function in each step, which is shown in (27).

max
π̂i
Vi(Ot, π̂i) :=

max
π̂i

Eπ̂

[ ∞∑
τ=t

γ(τ−t)Uti
(
Sτ , π̂i(Oτi), π̂−i(Oτ(−i))

)]
(27)

VI. VR VIDEO STREAMING SOLUTION

In this section, we solve the stochastic game from two
perspectives, i.e., how much data rate to request for each user
and how much to claim as their true value. For the true value
claiming problem, we analyze the optimal claiming strategy
for each user. Meanwhile, for the resource block requesting
problem, we elaborate on how users can take advantage of
DRL to achieve optimal VR video watching in the stochastic
game.

A. Bidding Strategy Analysis

In the communication resource auction process, the user
submits two bids to the base station, namely, the requested
data rate and the true value it achieves on the requested true
value. Considering the payment to be made, the user cannot
request too much data rate; otherwise, the potential payment
could overwhelm the reward it achieves. Also, when reporting
the true value to the base station, it needs to decide whether
to deviate from its real true value.

Lemma 1: For non-decreasing true value over requested
data rate, the maximum overall true value loss in the VCG
auction caused by user i is its claimed true value v̂ti.

Proof: Considering the winner determination mechanism in
the VCG auction, the central auction node decides whether the
user wins the auction by maximizing the overall true value.
Therefore, if user i wins the auction, (28) must be met with
ψti = 1, which means the central auction node can achieve a
higher overall true value by letting the user i win. Then we
can derive that the maximum true value loss caused by user
i is v̂ti as in (29).

max
ψ

N∑
i′=1,i′ 6=i

ψti′ v̂ti′ + ψtiv̂ti > max
ψ−i

N∑
i′=1,i′ 6=i

ψti′ v̂ti′ (28)

σti = max
ψ−i

N∑
i′=1,i′ 6=i

ψti′ v̂ti′ −max
ψ

N∑
i′=1,i′ 6=i

ψti′ v̂ti′ 6 v̂ti

(29)
Theorem 1: In the proposed system, after the user decides

the data rate to request, its dominant strategy is to claim its
true value v̂ti as the real true value vti on the requested data
rate.

Proof: Suppose the user wins the auction with the claimed
true value v̂ti and makes a payment σti. As is proved in (29),
σti 6 v̂ti. If the payment σti (or the overall true value loss
caused by user i) is lower than user i’s real true value vti,
then user i can also win the auction with the claimed value
v̂ti = vti as in (30), so there is no need to claim a higher true
value in this case. On the contrary, if the payment is higher
than vti, then the utility of the user vti−σti will be negative,
which means it is not a worthy option for the user to win
the auction. Therefore, users have no desire to claim higher
than their real true value. Moreover, claiming a lower true
value cannot bring users any extra utility, either. The reason
is that as long as the claimed true value v̂ti is higher than the
overall true value loss σti, the user cannot reduce the payment
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Q?i (St,Ati,At(−i)) = Uti(St,Ati,At(−i)) + γ
∑
St+1

P(St+1|St,Ati,At(−i)) · max
A(t+1)i

Q?i (St+1,A(t+1)i,A(t+1)(−i)) (32)

by reducing the claimed true value. When v̂ti 6 σti, the user
cannot win the auction with the claimed v̂ti. As a result, users
have no will to claim a lower true value, either.

σti = max
ψ−i

N∑
i′=1,i′ 6=i

ψti′ v̂ti′ −max
ψ

N∑
i′=1,i′ 6=i

ψti′ v̂ti′ 6 vti

→ max
ψ

N∑
i′=1,i′ 6=i

ψti′vti′ + ψtiv̂ti > max
ψ−i

N∑
i′=1,i′ 6=i

ψti′ v̂ti′

(30)

With the conclusion above, the joint resource block re-
questing and true value claiming policy can be decomposed
into two disjoint phases, i.e., the optimal data rate requesting
and the real true value reporting. Since the user can easily
evaluate the true value it could achieve with given data rate
based on (4) (5) (6) (11), we focus on the optimal data rate
requesting in the following.

B. Q-Learning for the Stochastic Game

Suppose users have perfect information about the system
state, then they request the optimal number of resource blocks
to maximize their long-term utility at each scheduling slot as
in (24). Considering the lack of priori information on the
system dynamics, Q-learning [33] based approach can be
utilized to learn the optimal policy for users.

Rather than learning the state value function Vi(St,π), Q-
learning learns the action value function Q(·) shown in (31).

Qi(St,Ati,At(−i)) = Uti(St,Ati,At(−i))+
γ
∑
St+1

P(St+1|St,Ati,At(−i))Qi(St+1,A(t+1)i,A(t+1)(−i))

(31)

According to the Bellman optimality equation [34], the
optimal action value function can be denoted as in (32). To
achieve the optimal long-term reward in each state, the user
only needs to find the action A?ti that maximizes the action
value function Q?i (St,Ati,At(−i)).

Q-learning learns the optimal state value function in
an iterative off-policy manner [33]. More specifically, the
learning agent continuously interacts with the environment,
observes an environment state St, takes an action Ati,
receives an instantaneous utility Uti(St,Ati,At(−i)), and
observes the environment transits to a new state St+1. The
above interaction is denoted as an experience memory entity
(St, ξt,Uti,St+1) ∈Mi, where Mi is the experience mem-
ory maintained by the learning agent or user i. The learning
agent uses the experience above to update its estimation
of action value functions, and the update rule is shown in
(33). In (33), η is the step size of the learning process. Q-
learning converges to the optimal if: a) the local network

state transition probability is stationary; and b) all state-
action pairs are visited infinitely often [35]. Condition b) can
be satisfied when the probability of choosing any action in
any state is non-zero, and this is usually achieved by the
ε-greedy policy. More specifically, when the learning agent
interacts with the environment, it chooses the action Ati that
maximizes the currently estimated Qi(St,Ati,At(−i)) with
probability 0 < ε < 1, and chooses an arbitrary action with
possibility 1 − ε. Meanwhile, in Q-learning, the off-policy
learning approach adopts the greedy policy to estimate the
action value function of the next state, which is reflected in
maxA(t+1)i

Qi(St+1,A(t+1)i,A(t+1)(−i)).
With the optimal true value claim known, the users only

need to decide how much data rate to request. Therefore, the
actions Ati and At(−i) in (31), (32), and (33) can be replaced
by ξti and ξt(−i).

C. D3RQN for POMDP-based Resource Block Requesting

For the formulated stochastic game, Q-learning can be
adopted to solve it. However, conventional Q-learning re-
quires the learning agent to maintain a Q-table to store the
state-action pairs and their action value functions, which
is prone to the curse of dimension in terms of state and
action. Moreover, conventional Q-Learning does not cater
well to POMDP problems. The recent progress in deep
reinforcement learning cancels the Q-table and replaces it
with a deep neural network, and the deep neural network can
be trained to simulate the state-action value functions, which
has been proved to be efficient by many excellent works
[10]. Besides, Deuling Double Deep Recurrent Q-Network
(D3RQN) algorithm [36] has been proved to be efficient
to solve POMDP problems thanks to the recurrent neural
networks structure [37]. Therefore, in this work, we adopt
the D3RQN algorithm [36] to learn the optimal strategy for
each user.

Compared to the stochastic game, in POMDP, the action
value function is evaluated based on users’ observation as

Qi(Oti, ξti) = Uti(St, ξti, ξt(−i))+
γ
∑
St+1

P(St+1|St, ξti, ξt(−i))Qi(O(t+1)i, ξ(t+1)i) (34)

where the new observation O(t+1)i is generated from the
new state S(t+1)i with the rule Ω. Since users or the learn-
ing agent can only observe the local state, the experience
memory cannot store the global state information. Therefore,
with D3RQN, each learning agent i maintains an experience
memory Mi with the tuples of (Oti, ξt,Uti,Ot+1).

In D3RQN, two deep neural networks of the same structure
are maintained by each learning agent i, namely, the primary
network with parameter θi and the target network with param-
eter θ−i . The two networks are updated asynchronously, which
greatly improves the stability of the training process [10]. The
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Qnewi (St,Ati,At(−i))←Qi(St,Ati,At(−i))+

η ·
(
Uti(St,Ati,At(−i)) + γ max

A(t+1)i

Qi(St+1,A(t+1)i,A(t+1)(−i))−Qi(St,Ati,At(−i))
)

(33)

Algorithm 2 D3RQN algorithm for VR video streaming.
1: for Each VR video user i do
2: Randomly initialize the primary network with θi and

target network with θ−i .
3: end for
4: for Each training episode do
5: Initialize the environment S.
6: for Each training step t do
7: for Each user i do
8: Observes the system and retrieve Oti = Ω(St).
9: Requests a number of communication resource

blocks ξti with the ε-greedy strategy based on its
primary network θi.

10: Submits the requested block number ξti and true
value v̂ti to the base station.

11: end for
12: The base station allocates the communication re-

sources and charge for the resources based on the
VCG auction mechanism (10) and (12).

13: The system state transits to a new state St+1.
14: for Each user i do
15: Receives an instantaneous utility as (21).
16: Observe the new system state and retrieve

O(t+1)i = Ω(St+1).
17: Store the transition (Oti, ξt,Uti,Ot+1) to its lo-

cal memory Mi.
18: end for
19: for Each user i do
20: Samples a mini-batch data from Mi.
21: Calculate the loss LD3RQN

i (θi) as in (35).
22: Calculate the mini-batch gradient of the loss

∇LD3RQN (θi) as (37).
23: Update the primary network with mini-batch gra-

dient descent θi ← θi − αD∇LD3RQN (θi).
24: if Update=True then
25: Update the target network θ−i with the primary

network θi.
26: end if
27: end for
28: end for
29: end for

deep neural network input is the environment state, and the
outputs are action value functions of corresponding actions. In
D3RQN, each learning agent’s primary network approximates
their action value function denoted by Qi(Oti, ξti; θi). To
update the primary network towards a more precise approxi-
mation, the following sequence of loss is optimized.

LD3RQN
i (θi) = E(Oti,ξti,Uti,O(t+1)i)∼Mi

[
yi−Qi(Oti, ξti; θi)

]2
(35)

with

yi =Uti(St, ξti, ξt(−i))+

γQi

(
O(t+1)i, arg max

ξ(t+1)i

Qi(O(t+1)i, ξ(t+1)i; θi); θ
−
i

)
(36)

In (35) and (36), yi is generated by the target network [38].
Also, the expectation is calculated based on the experience
memory (Oti, ξt,Uti,Ot+1) experienced by the learning
agent. Based on the experience memory, experience replay
can be utilized to train the neural networks. More specifically,
with mini-batches from the experience memory Mi, the
primary network is updated with the mini-batch gradient
descent over the loss.

∇LD3RQN (θi) = E(Oti,ξti,Uti,O(t+1)i)∼Mi

[(
yi−

Qi(Oti, ξti; θi)

)
· ∇Qi(Oti, ξti; θi)

] (37)

As for the structure of neural networks, there are two
important features in D3RQN, which is important in solving
the communication resource requesting problem. The first
feature is the decomposition of advantage function and state
value function in the neural network architecture, which helps
the user to learn faster about the advantage of requesting
different number of resource blocks.

The last but not least feature is the adoption of recurrent
networks. For POMDP problems, users learn their optimal
policy without full information of the system state, which
could make their estimation of the observation-based action
value function Qi(Oti, ξti) deviate from the real action value
function Qi(Sti, ξti). The recurrent neural network structure
[37] helps users to make a better estimation, and it narrows the
gap between the observation and real action value functions.
Hence, the users can achieve a better performance.

The procedure of the D3RQN algorithm is shown in
Algorithm 2. In step 1-3, the neural networks of each user’s
D3RQN are initialized. From step 4 of the algorithm, users
interact with the environment and update their parameters
θi. More specifically, the training is conducted in an episode
manner. At the beginning of each episode, the environment
is reset. In step 7-10, each user observes the system state,
retrieves an observation Oti and requests a data rate ac-
cordingly. In step 12, the base station collects bids from all
users and allocates the resources to them. Meanwhile, the
corresponding payment is charged. With given resources, the
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system transits to a new state, which consists of the transition
of VR video buffer and communication channel quality. In
step 14-17, each user stores the experience memory tuple
to their learning memory Mi. Then in step 20-23, each
user updates its primary network of the D3RQN algorithm
with mini-batch gradient descent. Note that, αD in step 23
is the learning rate of the D3RQN algorithm. In step 24-26,
the target network is updated every several training steps,
indicated by the manually set “Updated” flag.

VII. EVALUATION AND DISCUSSION

In this section, experiments and simulations are conducted
to validate the performance of the proposed ComPer-FedAvg
algorithm and the proposed D3RQN-based VR video stream-
ing scheme.

A. ComPer-FedAvg Algorithm Performance

We conduct the viewport prediction model training based
on the data set collected in [39], which contains 50 users’
viewing traces on 10 pieces of VR videos. When conducting
the ComPer-FedAvg training process, 6 arbitrary VR video
viewers are chosen to participate in the training process for a
randomly given VR video. The selected users drop their local
viewing history on the given VR video. Besides, a central
node is made up by stacking the remaining users’ viewing
history on the given VR video. In the training process, the
central and personalized weights ιc and ιu are both set as 0.5.

Four baseline schemes are implemented to validate the
improvement of the ComPer-FedAvg algorithm, which is
listed as follows.
• Conventional Per-FedAvg [26]: The central node lever-

ages the viewing history of participating users to train
a prediction model that minimizes the overall loss of
users’ locally personalized model.

• Conventional FedAvg [9]: The central node leverages the
viewing history of participating users to train a prediction
model that minimizes all participating users’ overall loss.

• Local: Users leverage their local viewing history to train
their own prediction model.

• Central: The central node trains a prediction model
based on the remaining users’ viewing history on the
given VR video.

As for the prediction model structure, we adopt a deep
neural network with four Convolutionary LSTM (C-LSTM)
layers and four Batch Normalization (BN) layers alterna-
tively cascaded as hidden layers. Note that, although this
structure takes advantage of the prevalent LSTM and CNN,
the proposed ComPer-FedAvg does not require a specific
structure, and the improvement can also be generalized to
other structures. The detailed parameter setting is listed in
table II.

The average prediction accuracy of different schemes is
presented in Fig. 4. As is shown in the figure, the proposed
scheme not only first converges, but also achieves the high-
est prediction accuracy among all the presented schemes.
The baseline Central scheme achieves the second-highest
accuracy, which indicates that the video’s common viewing

TABLE II: ComPer-FedAvg parameters.
Hidden layers 8 Layer composition C-LSTM × 4

BN × 4
C-LSTM kernal number 8 C-LSTM kernal size 3× 3

Learning rate 0.05 Batch size 360
Client 50 Video 10

Participating User 6 Activation function Relu
Prediction window 5 Local gradient descent 3
Global update K1 100 Local update K2 10
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Fig. 4: Average accuracy of the trained prediction model.

pattern is a more critical factor for the predicted VR video.
The baseline Per-FedAvg and the baseline Local scheme
achieves similar performance, and the baseline FedAvg al-
gorithm achieves the lowest accuracy. The result in Fig. 4
validates that by leveraging the information stored in both
users’ personal viewing history and the CP’s common viewing
history, it is possible to integrate the personal and common
viewing pattern to make a better prediction.

Besides the average prediction accuracy, we also present
user-wise loss and prediction accuracy in Fig. 5 and Fig. 6.
For better visibility, we randomly choose three users to shown
the user-wise performance. A promising result indicated by
Fig. 5 and Fig. 6 is that the proposed scheme not only achieves
better overall performance, it also outperforms baseline solu-
tions in each user. Another observation is that the performance
among different users differs slightly. The result indicates that
although the trained model has been locally personalized, it
cannot perfectly adapt to different user’s viewing patterns.
The potential reason includes the noise in the training data
set and the unpredictable sudden viewport shift of different
users.

B. VR Video Streaming Performance

In this subsection, we conduct simulations to validate
the performance of the proposed D3RQN-based VR video
streaming scheme.

In the simulation, a VR video viewport consists of 20 tiles.
Each tile has a high and low-quality version, and their bitrate
is set as 500kbps and 100kbps, respectively. The overall
bitrate requirement of a given viewport sums up to 2Mbps to
10Mbps [40]. The base station is equipped with 20 resource
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Fig. 5: User-wise loss of the training algorithm.
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Fig. 6: User-wise accuracy of the trained prediction model.

blocks to allocate, and the data rate each block can provide
ranges from 0.2Mbps to 3Mbps. For each user, the data rate
transits following a Markov manner. Meanwhile, the transition
of different resource block’s data rate is independent of each
other. In the local network, 3 users compete for the resource
blocks to watch their own VR video and prefetch predicted
tiles. More specifically, each user observes their local state
consisting of local buffer state and data rate resource blocks
can provide. With the observation and users’ policy, they
submit their requested data rate and corresponding true value
to the auction node. Then the auction node allocates resource
blocks to maximize the overall true value. Note that, the
data rate users request are aggregated into discrete values,
which ranges from 0.2Mbps to 20Mbps with an interval
of 0.2Mbps. Another factor to consider is users’ prediction
accuracy. For simplicity and better illustration, different users’
prediction accuracy is set to follow Gaussian distribution with
the average equals 80% and standard deviation equals 5%.
The reason to set viewport prediction accuracy to a Gaussian
distribution is to quantify its influence on the VR streaming
performance in the simulation. As for the implementation of
the D3RQN algorithm, the detailed parameters are listed in
table III. Note that, in table III, CL is short for Convolutional

TABLE III: D3RQN parameters.

Hidden layers 5 Layer composition
CL × 3

FLL × 1
LL × 1

Activitation function Relu Batch size 64
Memory size 10000 Learning rate 0.0001

Utility discounting factor 0.95 Exploration decreasing factor 0.999997
Episode number 500 Steps in each episode 5000
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Fig. 7: Convergence of the D3RQN scheme.

Layer, FLL is short for FLatten Layer, and LL is short for
LSTM layer.

Apart from the proposed D3RQN-based VR video stream-
ing scheme, three other baseline schemes are implemented to
validate the proposed scheme’s improvement.
• ELSN [41]: Without the local buffer information, the

users observe the network state and decide high or
low-quality tiles to prefetch. Based on their empirically
learned knowledge, they request corresponding resources
from the base station.

• Fair: The base station arbitrarily allocates the resource
blocks to users evenly.

• Greedy: Each user observes its local buffer and requests
a data rate to achieve its optimal performance.

The convergence of the proposed scheme is presented in
Fig. 7 and 8. The baseline scheme is the Stochastic Game
(SG), where each user has perfect information of the system
state. While in the POMPD case, users can only observe
its local state. The abscissa axis in Fig. 7 is the training
episode, and in each episode, 500 steps of interaction between
the user and the environment are conducted. The vertical
axis is the loss defined in (35). As shown in the figure, the
D3RQN-based scheme can achieve similar convergence to the
stochastic game with perfect global information. All users’
loss reduces to a similar level. A similar trend can also be
observed in 8. The thin continuous lines are the utilities users
can achieve in the SG case, and the thick dotted lines are the
utilities users can achieve in the POMDP case. The POMDP
case’s utilities are a little lower than the SG case, but the
gap is within an acceptable margin. The results in 7 and 8
illustrates the D3RQN-based approach can make a very close
approximation Qi(Oti, ξti) to Qi(St, ξt).
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Fig. 8: User-wise streaming utility.
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Fig. 9: CDF of VR viewing utility.

In Fig. 9, we present the estimated Cumulative Distribution
Function (CDF) of the VR viewing utility for all schemes.
The abscissa axis is the episode-wise average VR viewing
utility achieved by all users, and the vertical axis is the CDF
of the corresponding viewing utility. The VR viewing utility
CDF reflects users’ VR viewing experience distribution. As
is shown in the figure, the proposed scheme achieves the best
performance among all presented schemes, and the lowest
viewing utility is around 0.3. Meanwhile, the lowest viewing
utility of baseline schemes is lower than 0, which means
frequent stalls during the VR streaming process. The proposed
scheme’s better performance in terms of the lowest utility
ensures a more consecutive viewing experience for users. As
for the overall performance, the baseline ELSN scheme is
superior to the baseline fair and greedy scheme. The reason
is that the baseline ELSN scheme observes the network state
and dynamics and makes tile selection accordingly, which
outperforms the simple baseline scheme Fair and Greedy.
An interesting observation is that the ELSN scheme achieves
uneven performance for different users, which is reflected in
the plateau of the ELSN CDF.

The performance of system capacity is shown in 10, where
the influence of the different number of users is tested. When
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Fig. 10: VR viewing utility v.s. Node number.

the user number increases in the VR streaming system, the
performance of all schemes declines. For a given resource
supply, the increasing number of users intensifies the com-
petition of resource blocks, and the users cannot retrieve
enough data rate to enjoy their VR video. Even though,
the proposed scheme achieves the best performance, and it
can achieve approximately one more user capacity than the
baseline schemes. The baseline ELSN scheme neglects the
influence of buffer on VR video viewing, and it achieves
the second performance thanks to its efforts in observing the
network dynamics and making refined choices on tile quality.
The baseline scheme Fair arbitrarily allocates the resource
blocks to the user evenly without smart scheduling, making
its performance inferior to the more advanced schemes. As for
the baseline scheme Greedy, all users request the data rate that
maximize their performance. Constrained by the VCG auction
mechanism, only a small proportion of users can acquire the
requested data rate and it needs to pay a high price. Therefore,
the baseline greedy achieves the worst performance among all
schemes.

The influence of prediction accuracy is presented in Fig.
11. Intuitively, a higher prediction accuracy helps users to
make better use of limited data rate to download tiles that
will be watched. And the result in Fig. 11 validates the
intuition. As the prediction accuracy increases, the viewing
utility achieved by each scheme increases as well. Similar to
the case in Fig. 10, the proposed D3RQN scheme achieves
the best performance among all schemes. The reason is that
the proposed scheme makes resource block requests implicitly
considering the prediction accuracy, which is reflected in the
buffer state transition. Among all schemes, The proposed
scheme is the only one that observes the buffer state and
requests resource blocks accordingly.

In Fig. 12, the influence of the overall resource block
number is presented. The more resources provided to VR
video streaming, the higher possibility that users can acquire
the desired resource blocks to achieve their optimal expe-
rience. Therefore, all schemes exhibit an increasing trend
in the viewing utility. The proposed scheme achieves the
highest performance among all schemes. Interestingly, as the
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Fig. 11: VR viewing utility v.s. Prediction accuracy.
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Fig. 12: VR viewing utility v.s. Overall resources.

resource block supply increases to 30 blocks, the baseline
scheme Greedy achieves similar performance to the baseline
scheme Fair. The reason is as the resources become abundant,
it is of higher possibility that users can retrieve the requested
resource blocks and thus achieve better performance. Another
interesting observation is that the performance increment is
more apparent than that brought by improving prediction
accuracy as in Fig. 11. The result indicates that although
improving the prediction accuracy can improve VR streaming
performance, the communication resource provisioning could
be a dominant parameter that influences the VR streaming
performance.

VIII. CONCLUSION

This work has proposed an MEC-Enabled VR video
streaming system that integrates both VR video viewport
prediction and communication resource allocation. The con-
tributions of this work are mainly in two aspects. For the
first contribution, considering the importance of viewport
prediction in VR video streaming, we have proposed a novel
federated learning algorithm to train a viewport prediction
model. The proposed ComPer-FedAvg algorithm efficiently

leverages the knowledge hidden in users’ personal viewing
history and a given VR video’s common viewing history.
Besides, the viewport prediction model is learned in a dis-
tributed manner, efficiently protecting users’ privacy. The
evaluations have proved the improvement of the proposed
algorithm. For the second contribution, considering the influ-
ence of viewport prediction and prefetch, we have formulated
a buffer-aware VR viewing stochastic game to solve the
local network’s communication resource allocation problem.
Considering the privacy concern in the VR viewing process,
each VR user distributively decides the data rate to request
based on the local network dynamics and current viewing
state. With limited information available to each user, we
reformulated the stochastic game into a POMDP for each user.
The D3RQN algorithm is adopted for each user to achieve
their optimal performance. The simulation results validated
the improvement of the proposed scheme.
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