Multimed Tools Appl
DOI 10.1007/s11042-015-2549-x

Task rescheduling optimization to minimize network
resource consumption

Ao Zhou - Shangguang Wang - Ching-Hsien Hsu -
Qibo Sun - Fangchun Yang

Received: 7 November 2014 / Revised: 2 February 2015 / Accepted: 5 March 2015
© Springer Science+Business Media New York 2015

Abstract An increasing number of big-data services are being deployed in a cloud comput-
ing environment, attracted by the on-demand service, rapid elasticity, and low maintenance
costs. As a result, ensuring the quality of service has become an important research prob-
lem. Traditionally, task rescheduling is used to ensure a consistent quality of service in
the event of failure of a virtual machine. However, the network resource consumption
of different rescheduling methods varies. To address this problem, we propose a task
rescheduling method that minimizes network resource consumption.The method includes
three algorithms. The first obtains a set of good virtual machines from the large quantity of
service-providing virtual machines using the skyline operation. A ranking algorithm then
fuses the data size and the task emergency to identify significant tasks. Finally, we present
an algorithm that automatically determines the optimal insertion point for each task. To ver-
ify the effectiveness of the proposed method, we extend the renowned simulator CloudSim
and conduct a series of experiments. The results show that our method is more efficient than
other methods in terms of network resource consumption.

A.Zhou - S. Wang - Q. Sun - F. Yang
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China

A. Zhou
e-mail: aozhou@bupt.edu.cn

S. Wang
e-mail: sgwang@bupt.edu.cn

Q. Sun
e-mail: qsun@bupt.edu.cn

F. Yang
e-mail: fcyang@bupt.edu.cn

C.-H. Hsu (<)

Department of Computer Science and Information Engineering, Chung Hua University,
Hsinchu 707, Taiwan

e-mail: chh@chu.edu.tw

Published online: 25 March 2015 @ Springer

mailto:aozhou@bupt.edu.cn
mailto:sgwang@bupt.edu.cn
mailto:qsun@bupt.edu.cn
mailto:fcyang@bupt.edu.cn
mailto:chh@chu.edu.tw

Multimed Tools Appl

Keywords Cloud computing - Reliability - Big data analysis - Resource consumption -
Task rescheduling

1 Introduction

Cloud computing offers on-demand service, rapid elasticity, and low maintenance costs [2].
On-demand service means that consumers can provision computing, storage,and network
resources automatically as needed [5, 19]. Rapid elasticity enables users to acquire and
release resources quickly, and low maintenance costs that consumers do not need to main-
tain their own infrastructure [9, 12]. Attracted by the advantages of cloud computing, an
increasing number of big-data industrial companies are migrating their services to the cloud
environment [15].

However, cloud services entail a variety of risks [18]. The reliability of the cloud ser-
vice is greatly influenced by the reliability of the large number of virtual machines (VMs)
in the cloud datacenter. The failure of one or more VMs is inevitable in such a complex
cloud system [3], and such events are likely to impact all the tasks in the machines waiting
queue. Therefore, ensuring the reliability of cloud services has become an urgent research
problem.

The inevitability of VM failures means that some fault tolerance method should be
adopted to recover the service following a failure event. Fault tolerance is a traditional engi-
neering approach to improving reliability that enables a service to be provided in the event
of a failure. The quality demands vary across different services. We consider the following
problem. To provide big-data services in a cloud environment, the service-providing VM
needs to fetch the data to be processed from the database. There are many big-data process-
ing requests. The huge data from each request consists of many data blocks. To finish each
request in time, each data block processing task has a deadline. If a single VM cannot pro-
cess all the requests, the service is deployed on several VMs. Due to the possible failures of
service-providing VM, we shall adopt some failure resilience approach for cloud service.
Traditionally, this means rescheduling the tasks to other service-providing VMs. When one
VM fails, all tasks in the waiting queue need to be rescheduled to other service-providing
VMs. Then, the VM re-fetched the needed data from the central database and restart the
task. The process will consume great network resources. However, VM failure events may
be caused by software problems. Suppose the failed VM is on host server s. It is likely
that s had fetched the necessary data before the VM failed. In this condition, the new VM
can fetch the data from s. We can then schedule the task to the nearest service-providing
VM to save network resources. However, the rescheduled task may affect the execution
of other tasks, and the network resource consumption of different rescheduling method
varies.

To overcome the shortcomings, we propose a task rescheduling method (TRM) that
combines three algorithms. Because there are multiple service-providing VMs in the cloud
datacenter, we first choose a set of ”good” VMs to save time. Therefore, the first algorithm
filters the badservice-providing VMs using the skyline operation. A ranking algorithm then
fuses the data size with the task importance to identify the most significant tasks. After these
two steps, a third algorithm automatically determines the optimal insertion point for each
task.

To verify the effectiveness of our method, we extend the renowned cloud simulator
CloudSim to obtain FTCloudSim. We implement the proposed approach in FTCloudSim,
and compare its performance with that of other methods in terms of the total network

@ Springer

Multimed Tools Appl

resource consumption. Experimental results show that the proposed method not only
ensures cloud service reliability, but also reduces the consumption of network resources.

The rest of this paper is organized as follows. In Section 2, we introduce some related
work. In Section 3, further background to the research problem is presented, and the pro-
posed method is described. We introduce the system architecture and additional technical
details of our proposed method in Section 4. Section 5 presents the experimental results,
and Section 6 concludes the paper.

2 Related work and discussion

There have been plenty of studies on cloud service reliability assurance. Here, we explore
the key technologies for ensuring the reliability of cloud services.

A number of researchers have modeled the reliability of cloud services. For example,
[13] proposed a scalable method to model the reliability of a large-scale cloud. This paper
presented a Markov chain-based method to reduce the analysis time. The cloud system was
modeled as a series of coupled interacting Markov chain-based sub models. Furthermore, a
Petrinet-based paradigm was presented to solve the Markov chain.

Various types of failure can afflict computing resources, e.g., overflow failure, timeout
failure. In [7], these failures were modeled in a cloud computing environment using Markov
chains, queueing theory, a Bayesian method, and graph theory. Based on the developed
model, the authors also proposed an algorithm to evaluate cloud service reliability.

References [8, 10, 14, 16] adopt fault avoidance techniques to ensure the reliability of
cloud services. Fault avoidance techniques try to prevent faults in the system and protect
components from failure.

The Cloudval framework [16] was proposed to validate the reliability of cloud infrastruc-
ture. This framework tests the virtualized environment by conducting fault injection-based
experiments. Fault injection-based testing is a type of black box testing in which users
don’t need to know the implementation details of the virtualized environment. Various types
of fault can be injected, including complex fault models such as maintenance events. The
framework is extensible, enabling users to add new fault models.

The effects of temperature on hardware reliability were studied in [8] using a large
collection of data. Other methods have aimed to reduce energy consumption and carbon
emissions. However, the repeated on-off cycles can increases the probability of host server
failure events. The processor life time can also be affected by these on-off cycles. To solve
this problem, [10] proposed a tradeoff method to balance energy consumption and reliability
cost.

The virtualization of computing resources is implemented by a virtual machine monitor
(VMM). As this is software, VMM s face the risk of software aging. To avoid failures caused
by software aging, [14] proposed a software rejuvenation method that captures software
aging states and enables live migrations. The experimental results showed that cold-VM
rejuvenation is sometimes better than warm-VM rejuvenation.

However, the cloud system is very complex, and VM failures are inevitable. Thus, the
adoption of a fault tolerance method is necessary. To this end, [10, 14] attempted to ensure
cloud service reliability by exploiting redundancy.

There are usually a large number of service requests. Therefore, a service is always
deployed across a large number of VMs. In this way, all the service requests can be finished
on time. Because some VMs may fail, we need to deploy the service on more VMs than
necessary to ensure service reliability. This results in a number of redundant VMs. Indeed,

@ Springer

Multimed Tools Appl

cloud services with many components will have various levels of redundancy. To attack this
problem, [17, 20, 21] proposed a ranking-based method in which all components are ranked
according to their invocation structures and invocation frequencies. Based on the ranking
results, an optimal algorithm was derived that determines the fault tolerance strategy for
different components.

Different from the above method, in which the redundancy of each component is fixed,
[11] proposed an unfixed redundancy method. This considers the changing redundancy of
each component with time. When a failure event occurs, the method attempts to restore the
necessary redundancy. By taking the resource state and service control flow into considera-
tion, the redundancy of service components can be adjusted. This method not only adjusts
the components impacted by the failure event, but also reconfigures other components. In
this way, the method can reduce the implementation cost of the fault tolerance method.

As we know, when a VM fails, the tasks in the waiting queue need to be rescheduled
to other service-providing VMs. However, none of the currently available methods have
considered the network resource consumption optimization when rescheduling the affected
tasks. Re-fetching the needed data from the central database will consume great network
resources. VM failure events may be caused by software problems. We may fetch the data
from the host server where the failed VM is placed. However, the network resource con-
sumption of different rescheduling methods is quite different. Our aim is to design a TRM
that minimizes network resource consumption.

Unlike the methods discussed in this section, we propose a TRM that can optimize net-
work resource consumption. The details of our method are introduced in the following
sections.

3 Preliminaries

To introduce our proposed method, we present a motivating example. Task rescheduling
is then formulated as an optimization problem. The notation used throughout the paper is
listed in Table 1.

3.1 Motivating example

In cloud computing, all computing resources are virtualized. The computing resources are
provided in units of VMs, with one or more VMs hosted on a server. In a cloud environ-
ment, services are deployed on many VMs to ensure the large number of tasks finish on
time. However, the VMs in the datacenter may fail for many reasons. To ensure reliability,
more VMs than needed are provided for the server, and tasks are scheduled to other service
providing VMs when a VM fails.

There are many big-data processing requests. The huge data from each request consists
of many data blocks. To finish each request in time, each data block processing task has
a deadline. As shown in Fig. 1, when a VM fails, all data block processing tasks in the
waiting queue need to be rescheduled to a new VM. To finish the request in time, each task
has a deadline. If we randomly reschedule tasks to other VMs, they may not be completed
on time. If we schedule a task at the end of a waiting queue, that task will not be finished
for a long time. If a task is rescheduled at the head of a waiting queue, some other tasks
in the queue will not be finished on time. Furthermore, The network resource consumption
of different rescheduling methods is quite different. For data-intensive services, the new
VM must re-fetch the data to be processed from the central database. As discussed in the

@ Springer

Multimed Tools Appl

Table 1 Notations

Symbol Meaning

PM,; The ith physical machine or host server in the data center, i = 1, 2, ...

vmpg The failed virtual machine

PM(vmp) The physical machine on which P M (vm) is located

vm;j A virtual machine, j =1,2,3 vm; is characterized by a (P M (vm;), Q(vm;))

Ty A task, k = 1,2,3.... Ty is characterized by a three-parameter tuple
(R(Tk), tdeadtine(Tic), VM (Ti))

vm (Ty) The virtual machine in which 7 is running

Q(vm;) The task waiting queue of vm;

L, A link in the network, x = 1,2,3

R(Ty) The data size of Ty

tdeadiine (Tk) The deadline of T

twait (Tk) The queue waiting time

tner (Ti) The queue waiting time

tp(T;, vmy) The time vmy needed to process T;

d(vm;, vm)
Pred(Q(vm;), T})
Succ(Q(vm;), T})
Index(Q(vm;), Tj)

The distance between the two virtual machine

All tasks before T; in the queue

All tasks after T; in the queue

The position of T in the queue

Introduction, the host server s may already have fetched the necessary data before the VM
failed, so the new VM can simply fetch the data from s. We can then schedule the task to the
nearest service-providing VM to save network resources. We cannot schedule all tasks to
the nearest service providing VM. The VM is not strong enough to finish all tasks in time.
To address the above problems, we propose a TRM that minimizes network resource
consumption. We consider the problem in which all VM failures are caused by software

problems.

3.2 Problem definition

The task rescheduling problem can be formulated as the following optimization problem:

miny Y Wiy * R(Ty) (1
x y

has

tdeadline(Ti) = twait (Ti) + tnet (T7) + tp(Tiv vmy),
if T,CQwmp) and T,

been rescheduled to

Qmy) (2

tdeadline(Tj) = twail(Tj) + tnet(Tj) + tp(Tja vmy),

if T;C Succ(Q(vmy),T;) after T; has been rescheduled to Q(vmy)(3)

where W, is 1 if the data of T needs to be transferred through network link L ; otherwise,
Wyy is 0. The objective function minimizes network resource consumption. The constraint

@ Springer

Multimed Tools Appl

W VM2 VMs VM
T2 T1 Ti1
T3 Ts T12

T2
Te

Fig. 1 An example of tasks rescheduling

in (2) ensures that each rescheduled task must be completed before the deadline. The con-
straint in (3) indicates that the rescheduled task cannot affect the execution of other tasks.
After T; has been rescheduled, all tasks behind 7; must be completed before the deadline.

4 Proposed method

Figure 2 shows the system architecture of our TRM. The main procedures of TRM are as
follows:

VM filtration

Waiting queue
modeling

VM filtration
algorithm

T

Connected graph
construction

Insertion point

> searching
Tasks ranking
Task emergency
calculation Tasks ranking
ST I algorithm
calculation

Fig. 2 System architecture of TRM

@ Springer

Multimed Tools Appl

1. The waiting queue importance is calculated for each service-providing VM. A service-
providing VM connection graph is then built based on the datacenter network topology
structure.

2. Based on the waiting queue emergency and connection graph, the VMs are filtered by
employing the skyline operator.

3. The emergency of each task is calculated. The data size that can be fetched from
P M (vmp) is also obtained.

4. All tasks in the waiting queue of vm r are ranked.

5. The optimal insertion point for each task in the waiting queue of vm r is determined.

4.1 Phase 1: virtual machine filtration

The large number of service-providing VMs makes it very time consuming to traverse all
VMs. Therefore, we filter out a set of good VMs from the large set of service-providing
VMs. We adopt the skyline operation [4] to filter the VMs.

Skyline computation roots in multi-criteria decision making problem, and is commonly
used to filter out a set of good points from a large number of data points. Suppose point x
and point y are two points in the k-dimensional space. x is denoted by (xy, x2, ...xx), and
y is denoted by (y1, y2, ..yx). x dominates y if x is as good or better in all dimensions and
better in at least one dimension. Those points which are not dominated by any other point
are called skyline. In our method, each point denotes a vm. All VMs in the skyline are called
good VM, and other VMs are called bad VMs. In our method, each VM is denoted by a
vector. A VM is said to be good if it is not dominated by any other VMs. One VM dominates
another if it is as good or better in all dimensions, and better in at least one dimension. In
our method, each VM is denoted as follows:

vm; =< e(vm;),d(vmp, vm;) > 4

len(Q(vm;)) j
e(vm;) = Z e(Tj)

14+2434...4+len(Q(vm;))

=1
len(Q(vm;)) j*2
= > eIy)
o len(Q(vm;))(len(Q(vm;)) + 1)
e(T]) = tdeadline(T;) — teurrent + tp(Tia vmyg) (6)

where e(vm;) denotes the emergency of the waiting queue, and e(7;) denotes the emergency
of each task. If an emergent task is at the head of the queue, we can reschedule a task behind
it. If a very emergent task (e(7;) equal to 0) is at the tail of the queue, we can only reschedule
the task at the tail. There is then a large probability that the task cannot be finished on time.
Therefore, we calculate the weighted average of the task emergency to obtain the queue
importance.

The virtual machine filtration procedure is shown in Algorithm1.

@ Springer

Multimed Tools Appl

Algorithm 1 Virtual machine filtration algorithm

Input: all virtual machine info vector<e(vm;),d(vimg,vm;)> vims
Output: all good virtual machines vector<vms> DVms

1 add vms[1] to DVms ;
2 for each element vmsli] in vins do
3 for each element DVms[j] in DVms do
4 if DVms < vms[1] then
5 | R
6 end
7 else if vms(i] < DVms][j] then
8 Remove DVms|j] from DV ms;,
9 Add vmsli] to DVms;
10 end
11 else
12 | Addvms[i] to DVms;
13 end
14 end
15 end

16 return DVms;

Step1: We select a virtual machine from all service-providing VMs, and place it in the sky-
line set.
Step2: Each service-providing vm; is compared with all VMs in the skyline set.
Step3: If vm; is dominated by any VM within the skyline set, it is eliminated and will not
be considered in future iterations.
Step4: If vm; dominates one or more VMs in the skyline set, the dominated VMs are elim-
inated; that is, these VMs are removed from the skyline set and will not be considered in
future iterations. vm; is inserted into the skyline set.
Step5: If vm; cannot be compared with all VMs in the skyline set, vm; is inserted into the
skyline set.

At the end of each iteration, we obtain all good VMs (those not dominated by other VMs).

4.2 Phase 2: tasks ranking

The task importance is calculated by (6). When searching for the optimal insertion point,
we traverse the VMs, starting with the nearest VM and moving to the furthest VM. VMs
that are close to the failed VM will have less network transfer latency. As some tasks are
more important than others, we first determine the insertion point for the more important
tasks. If the selected VM is close to the failed VM, the data transfer will consume less
network resources. Therefore, when two tasks have the same importance, we first search for
an insertion point for the task with the larger data size.

Therefore, the tasks are arranged based on their lexicographic sorting order. We sort all
tasks according to their importance, with those having the same importance sorted based on
their data size.

4.3 Phase 3: insertion point searching
We now describe how the insertion point is determined for each task. The optimal insertion
point of a task must satisfy the following constraints: (1) After the task has been inserted

into the queue, the rescheduled task can be completed before the deadline. (2) After the task
has been inserted into the queue, all the tasks behind the rescheduled task can be completed

@ Springer

Multimed Tools Appl

before the deadline. When traversing the queues to search for task insertion points, we obtain
certain information about the queues, such as the waiting time if we insert the task at the tail
of the queue and whether a good insertion point can be determined rapidly in future if queue
information is recorded. Algorithms 2 and 3 describe our insertion point search mechanism.

Algorithm 2 Insertion point searching algorithm

52

Input: all virtual machine info vector<e(vm;),d(vmp,vm;)> vims
Output: all good virtual machines vector<vms>, DVms

for each element T; in tasks do

for each element vmj in vms do

Vector <QI> QInfo =vm;->QInfo ;

if QInfo.size() # O then

end

return DV ms;

end

end
else

end

end

int start = Q(vm;).size();

int end = QInfo.get(QInfo.size());

for int k = QlInfo.size(); k>0; k—do

QI info = QInfo.get(k);

end =k;

if info— > minDelay < t,(t;,vm) then

if find then
‘ goto nextTask;
end
else
‘ goto nextVM ;
end
end
else
| goto nextVM ;
end
end
else
bool find = subqueueSearch(vm;,start,end,T;);
if find then
| goto nextTask;
end

end
end

start = Q(vm;).size;
end =0;
bool find = subqueueSearch(vin ;,Q(vm;).size,0,T;);
if find then
| goto nextTask;
end
else
| goto nextVM ;
end

if end != 0 then

bool find = subqueueSearch(vm ,end,0,T;);
if find then

| goto nextTask;
end

nextTask

ifinfo— > tyuir < ldeadline(Ti) -II,(TI',ij) then
bool find = subqueueSearch(vm;,start,end,T;);

@ Springer

Multimed Tools Appl

Algorithm 3 Subqueue searching algorithm

Input: 7;,vm;,int begin, int end
Output: bool

1 int minDelay = minDelay(Q(vm;),T;);
2 int hygir = twair (Q(ij)sTi); T = Q(ij)-get(begin);
3 k=begin;
4 if k > end then
5 if 1,(T;,vm;) > T;.getDelay() then
6 | return false;
7 end
8 if twait > tgeqatine(T;)-tp (Ti,vm ;) then
9 k=k-1;
10 minDelay = min(minDelay, Q(vm).get(k).minDelay);
1 twait = twait - tp(vmjsTi);
12 end
13 else if 7,4 < tdeaclline(n)'tp(ny ij) then
14 insert;
15 update the information;
16 return true;
17 end
18 end

We now traverse the sorted task list. For each task 7;, we traverse the VMs, starting with the
closest. For each VM, we examine insertion points from the tail to the head of the queue.
If the current waiting time is shorter than the deadline, 7; is inserted into the queue at the
current point. Otherwise, if the current waiting time is longer than the time available to the
deadline, we move further down the queue to reduce the waiting time. However, this may
cause the tasks behind it to miss their deadlines. Therefore, we calculate the waiting time
for the following task. If the waiting time is less than that to the deadline, we insert the task
and continue the iteration. However, if the waiting time is longer than that to the deadline
after the insertion, we break this circle and traverse the next VM.

To reduce the execution time, we record queue information after each task has been
inserted, including the waiting time of the inserted task and the most important task behind
the inserted task. When traversing a waiting queue, we traverse the inserted tasks from tail
to head, and make use of this recorded information to narrow the search.

5 Experiments

To verify the effectiveness of our TRM, we extend CloudSim [6] and conduct a series of
experiments. This section describes the experimental setup and presents the experimental
results.

5.1 Experimental setup

We construct a 16-port fat-tree datacenter network [1]. Each host server can host up to four

VMs. We trigger 100 VM failure events, and extract all tasks with a size of between 5 and 10
min from the DAS2 dataset!. We then study the task size distribution, and generate 25000

Thttp://gwa.ewi.tudelft.nl/datasets/gwa-t- 1-das2

@ Springer

http://gwa.ewi.tudelft.nl/datasets/gwa-t-1-das2

Multimed Tools Appl

7.61x10°

7.60x10°

7.59x10°

7.58x10°

7.57x10°

7.56x10°

Total root layer packet size(M)

7.55x10°

7.54x10° T T T T T
RHead RTail RR CRM TRM

Fig. 3 Total root layer packet size

data block processing tasks with the same distribution. The task size is multiplied by 6to
obtain the deadline. The data size of each task is normally distributed between 200 and 400
MB. The number of service-providing VMs for each service follows a normal distribution
between 10 and 20. We demonstrate the capabilities of FTCloudSim, which uses our TRM,
by comparing it with the following four baseline methods:

1. RHead. A VM is randomly selected for each rescheduled task. The task is inserted at
the head of the task waiting queue. The data is fetched from the central database or
the host server on which the failed VM located, and the strategy is determined by the
network distance.

7.62x10°

7.60x10° -

7.58x10°

7.56x10°

7.54x10° 4

7.52x10°

Total aggregation layer packet size(M)

7.50x10° T T T T T
RHead RTail RR CRM TRM

Fig. 4 Total aggregation layer packet size

@ Springer

Multimed Tools Appl

7.610x10°

7.605x10° A

7.600x10° A

7.595x10° o

Total edge layer packet size(M)

RHead RTail RR CRM TRM

Fig. 5 Total edge layer packet size

2. RTail. A VM is randomly selected for each rescheduled task. The task is inserted at the
tail of the task waiting queue. The data is fetched from the central database or the host
server on which the failed VM located, and the strategy is determined by the network
distance.

3. RR. A VM is randomly selected for each rescheduled task. The task is inserted at
random into the task waiting queue. The data is fetched from the central database or
the host server on which the failed VM located, and the strategy is determined by the
network distance.

4. CRM. The tasks are rescheduled to the nearest VM, but the data is retched from the
central database.

2.285x107

2.280x107 4

2.275x107 4

2.270x107 4

Total packet size(M)

2.265x107 4

2.260x107 T T T T T
RHead RTail RR CRM TRM

Fig. 6 Total packet size

@ Springer

Multimed Tools Appl

6
I VN is 800
5 | [VN is 1000
z ,]
[0) =
£ _
s —
Q34
®
>
£
o 2 A
(@)
1 4
O .IH Il T T T T
5 10 15 20 25 30
FN

Fig. 7 Computation time

The data is re-fetched from the host of the failed VM if there is one copy. We will evaluate

the proposed mechanisms using the following four metrics:

Total root layer packet size. The total size of packets that are routed through the root
layer.

Total aggregation layer packet size. The total size of network packets that are routed
through the aggregation layer.

Total edge layer packet size. The total size of network packets that are routed through
the edge layer.

Total packet size. The sum of total root level packet size, total aggregation level packet
size and total edge level packet size.

5.2 Performance comparison

Figures 3, 4, 5 and 6 display the network resource consumption performance of all methods
on the DAS2 dataset. The results in these figures demonstrate that:

Compared to other methods, TRM consumes less root level network resources.
Compared to other methods, TRM consumes less aggregation level network resources.
CRM consume less edge layer network resource than other methods. That’s because
when the two data exchanging nodes are in the same pod, the data would be routed
through the edge layer twice.

Compared to other methods, TRM consumes less total network resources.

Because our method considers the network topological structure and task characteristic,
tasks are rescheduled to the optimal VMs. Therefore, TRM minimizes network resource
consumption.

@ Springer

Multimed Tools Appl

5.3 Computation time

This section studies the computation time of our method. We investigate how the follow-
ing two factors affect the computation time of our method: (1) the number of VMs that
supply the same service (VN). (2) the number of VMs (of same service) that fail simultane-
ously (FN). Phase 1 and Phase 2 of our method can execute concurrently. In addition, the
rescheduling strategy decision of different services are independent from each other. There-
fore, we only count the strategy computation time of a single service. Figure 7 illustrates
the computation time of our method. As shown in Fig. 7, the computation time increases
as FN increases. In addition, Fig 7 depicts that the computation time is also on an upward
trend with an increase in VN. However, comparing to the size of the big-data task, the
computation time is very short. The results can validate the effectiveness of our method.

6 Conclusion

In this paper, we have proposed a task rescheduling method to minimize network resource
consumption. First, the method filters the “bad” VMs using the skyline operation. Sec-
ond, tasks are ranked based on their importance and data size. Finally, a queue searching
algorithm determines the optimal location for each task. Experimental results show the
advantage of our method.

In future work, we will conduct further experimental analyses on the impact of the num-
ber of service-providing nodes, and consider methods of ensuring the reliability of real-time
services.

Acknowledgments The work presented in this study is supported by NSFC (61272521); SRFDP
(20110005130001); the Fundamental Research Funds for the Central Universities (2014RC1101); Beijing
Natural Science Foundation (4132048).

References

1. Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture.
ACM SIGCOMM Comput Commun Rev 38(4):63-74

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica
1(2010) A view of cloud computing. Commun ACM 53(4):50-58

3. Bauer E, Adams R (2012) Reliability and availability of cloud computing. John Wiley and Sons

4. Borzsony S, Kossmann D, Stocker K (2001) The skyline operator. In: Proceedings of the 17th
International Conference on Data Engineering, IEEE, pp 421-430

5. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT plat-
forms: vision, hype, and reality for delivering computing as the Sth utility. Futur Gener Comput Syst
25(6):599-616

6. Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011) CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw Pract Experience 41(1):23-50

7. Dai Y-S, Yang B, Dongarra J, Zhang G (2009) Cloud service reliability: Modeling and analysis. In: 15th
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC), Citeseer, pp 1-17

8. El-Sayed N, Stefanovici IA, Amvrosiadis G, Hwang AA, Schroeder B (2012) Temperature management
in data centers: Why some (might) like it hot. ACM SIGMETRICS Perform Eval Rev 40(1):163-174

9. Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I (2009) Above
the clouds: a Berkeley view of cloud computing. Dept Electrical Eng and Comput Sciences, University
of California, Berkeley, Rep UCB/EECS

@ Springer

Multimed Tools Appl

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Guenter B Jain N, Managing cost, performance, and reliability tradeoffs for energy-aware server
provisioning. In: Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM) IEEE, pp 1332-1340

Jung G, Joshi KR, Hiltunen MA (2010) Schlichting, R D, Pu C Performance and availability aware regen-
eration for cloud based multitier applications. In: Dependable systems and Networks (DSN),IEEE/IFIP
International Conference on IEEE, pp 497-506

Liu Z, Wang S, Sun Q, Zou H, Yang F (2014) Cost-aware cloud service request scheduling for SaaS
providers. Comput J 57(2):291-301

Longo F, Ghosh R, Naik VK, Trivedi KS (2011) A scalable availability model for infrastructure as- a-
service cloud. In: Proceedings of the 41st annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), IEEE, pp 335-346

Machida F Kim, D S, Trivedi KS (2010) Modeling and analysis of software rejuvenation in a server
virtualized system. Software aging,rejuvenation (WoSAR), 2010 IEEE Second International Workshop
on IEEE, pp. 1-6

Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A (2011) Cloud computing? The business
perspective. Decis Support Syst 51(1):176-189

Pham C, Chen D, Kalbarczyk Z, Iyer RK (2011) Cloudal: A framework for validation of virtualization
environment in cloud infrastructure. In: 2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks (DSN), IEEE, pp 189-196

Qiu W, Zheng Z, Wang X, Yang X, Lyu M (2014) Reliability-based design optimization for cloud
migration. IEEE Trans Ser Comput 7(2):223-236

Schwarzkopf M Murray, D G, Hand S (2012)The seven deadly sins of cloud computing research. In: 4th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud) pp.1-5

Wang S, Liu Z, Sun Q, Zou H, Yang F (2014) Towards an accurate evaluation of quality of cloud service
in service-oriented cloud computing. J Intell Manuf 25(2):283-291

Zheng Z, Wu X, Zhang Y, Lyu MR, Wang J (2013) QoS ranking prediction for cloud services. Parallel
and Distributed Systems. IEEE Trans 24(6):1213-1222

Zheng Z, Zhou TC, Lyu MR, King I (2010) FTCloud: A component ranking framework for fault-
tolerant cloud applications. In: IEEE 21st International Symposium on Software Reliability Engineering
(ISSRE) 2010, IEEE, pp 398-407

Ao Zhou received the M.E. degree in computer science and technology from the Institute of Network Tech-
nology, Beijing University of Posts and Telecommunications, in 2012. Currently, she is a Ph.D. candidate
at the State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications. Her research interests include cloud computing, service reliability.

@ Springer

Multimed Tools Appl

Shangguang Wang is an associate professor at the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications. He received his Ph.D. degree in computer
science at Beijing University of Posts and Telecommunications of China in 2011. His PhD thesis was awarded
as outstanding doctoral dissertation by BUPT in 2012. His research interests include Service Computing,
Cloud Services, QoS Management. He is a member of IEEE.

\

Ching-Hsien Hsu is a professor in department of computer science and information engineering at Chung
Hua University, Taiwan. His research includes high performance computing, cloud computing, parallel and
distributed systems, ubiquitous/pervasive computing and intelligence. He has been involved in more than 100
conferences and workshops as various chairs and more than 200 conferences/workshops as a program com-
mittee member. He is the editor-in-chief of international journal of Grid and High Performance Computing,
and serving as editorial board for around 20 international journals.

@ Springer

Multimed Tools Appl

N

Qibo Sun received his PhD degree in communication and electronic system from the Beijing University
of Posts and Telecommunication in 2002. He is currently an associate professor at the Beijing University
of Posts and Telecommunication in China. He is a member of the China computer federation. His current
research interests include services computing, internet of things, and network security.

Fangchun Yang received his PhD degree in communication and electronic system from the Beijing Uni-
versity of Posts and Telecommunication in 1990. He is currently a professor at the Beijing University of
Posts and Telecommunication, China. He has published 6 books and more than 80 papers. His current
research interests include network intelligence, services computing, communications software, soft switching
technology, and network security. He is a fellow of the IET.

@ Springer

	Task rescheduling optimization to minimize network resource consumption
	Abstract
	Introduction
	Related work and discussion
	Preliminaries
	Motivating example
	Problem definition

	Proposed method
	Phase 1: virtual machine filtration
	Phase 2: tasks ranking
	Phase 3: insertion point searching

	Experiments
	Experimental setup
	Performance comparison
	Computation time

	Conclusion
	Acknowledgments
	References

